

EXTRACTS

FROM

NARRATIVE REPORTS

OF OFFICERS OF THE

Surbey of India

FOR THE SEASON

1903-04.

PREPARED UNDER THE DIRECTION OF

COLONEL F. B. LONGE, R.E., SURVEYOR GENERAL OF INDIA.

CONTENTS.

I-THE MAGNETIC SURVEY OF INDIA. II-PENDULUM OPERATIONS. III-TIDAL AND LEVELLING OPERATIONS. IV-ASTRONOMICAL AZIMUTHS. V-UTILISATION OF OLD TRAVERSE DATA FOR MODERN SURVEYS IN THE UNITED PROVINCES OF AGRA AND OUDH. VI-IDENTIFICATION OF SNOW PEAKS IN NEPAL. VII-TOPOGRAPHICAL SURVEYS IN SIND. VII-NOTES ON TOWN AND MUNICIPAL SURVEYS. IX-NOTES ON RIVERAIN SURVEYS IN THE PUNJAB.

CALCUTTA: OFFICE OF THE SUPERINTENDENT, GOVERNMENT PRINTING, INDIA. 1905.

Price Rs. 1-8 or Two Shillings and Three Pence.

Dup. 08

BUPLICATE

• •

.

. . .

Digitized by Google

.

• *

. . .

Survey of India.

EXTRACTS

FROM

NARRATIVE REPORTS

FOR THE SEASON

1903-04.

Agents for the Sale of Books published by the Superintendent of Government Printing, India, Calcutta.

IN ENGLAND.

E. A. ARNOLD, 41 and 43, Maddox Street, Bond Street, London, W.

CONSTABLE & Co., 16, James Street, Haymarket, London, W.

GRINDLAY & Co., 54, Parliament Street, London, S. W.

H. S. KING & Co., 65, Cornhill, and 9, Pall Mall, London, E. C.

P. S. KING & SON, 2 and 4, Great Smith Street, Westminster, London, S. W.

KEGAN PAUL, TRENCH, TRÜBNER & Co., 43, Gerrard Street, Soho, London, W.

BERNARD QUARITCH, 15, Piccadilly, London, W. C. 4 B. H. BLACKWELL, 50 and 51, Broad Street, Oxford.

DEIGHTON, BELL & Co., Cambridge.

ON THE CONTINENT.

R. FRIEDLÄNDER & SOHN, 11, Carlstrasse, Berlin, N. W.

OTTO HARRASSOWITZ, Leipzig.

KARL HIERSEMANN, Leipzig.

RUDOLF HAUPT, Halle, A. S. Germany.

ERNEST LEROUX, 28, Rué Bonaparte, Paris.

MARTINUS NIJHOFF The Hague, Holland.

In India.

THACKER, SPINK & Co., Calcutta and Simla. NEWMAN & Co., Calcutta. S. K. LAHIRI & Co., Calcutta. R. CAMBRAY & Co., Calcutta. HIGGINBOTHAM & Co., Madras. V. KALYANARAMA AIYER & Co., Madras. G. A. NATESAN & Co., Madras. THOMPSON & Co., Madras. MURTHY & Co., Madras. TEMPLE & Co., Madras. COMBRIDGE & Co., Madras. A. R. PILLAI & Co., Trivandrum. THACKER & Co., LD., Bombay. A. J. COMBRIDGE & Co., Bombay. D. B. TARAPOREVALA, SONS & Co., Bombay. RADHABAI ATMARAM SAGOON, Bombay. N. B. MATHUR, Superintendent, Nazair Kanun Hind Press, Allahabad. RAI SAHIB M. GULAB SINGH & SONS, Mufid-I-Am Press, Lahore. SUPERINTENDENT, AMERICAN BAPTIST MISSION PRESS, Rangoon. SUNDER PANDURANG, Bombay.

A. M. & J. FERGUSON, Ceylon.

Digitized by Google

FROM

NARRATIVE REPORTS

OF OFFICERS OF THE

Surbey of Xndia

FOR THE SEASON

1903-04.

PREPARED UNDER THE DIRECTION OF

COLONEL F. B. LONGE, R.E.,

SURVEYOR GENERAL OF INDIA.

CONTENTS :

I.-THE MAGNETIC SURVEY OF INDIA.

II.-PENDULUM OPERATIONS.

III.-TIDAL AND LEVELLING OPERATIONS.

IV.—ASTRONOMICAL AZIMUTHS.

V.-UTILISATION OF OLD TRAVERSE DATA FOR MODERN SURVEYS IN THE UNITED PROVINCES OF AGRA AND OUDH.

VI.-IDENTIFICATION OF SNOW PEAKS IN NEPAL.

VII.-TOPOGRAPHICAL SURVEYS IN SIND.

VIII.-NOTES ON TOWN AND MUNICIPAL SURVEYS.

IX .- NOTES ON RIVERAIN SURVEYS IN THE PUNJAB.

CALCUTTA : OFFICE OF THE SUPERINTENDENT, GOVERNMENT PRINTING, INDIA.

1906.

 $M(\cdot)$

CALCUITA : GOVERNMENT OF INDIA GENTRAL PRINTNIG OFFICE; 8, HASTINGS STREET.

Digitized by Google

CONTENTS.

I.—The Magnetic Survey of India	•		•	•	•	•	•	PAGE. I
U -Pendulum Operations .	•		•	•	•		•	129
III.—Tidal and Levelling Operations	•	•	•	•	•	•	•	143
IV.—Astronomical Azimuths .	•	•	•	•	•	•	•	167
VUtilisation of old traverse data for	r mo	dern	survey	/S				-
in the United Provinces of Ag	ra a	nd Ou	ıdh	•	•	•	•	171
VIIdentification of Snow Peaks in N	lepa	1.	•	•	• `	•	•	172
VII.—Topographical Surveys in Sind	•	•	•	•	•		•	180
VIIL.—Notes on Town and Municipal Su	rvey	/S .	•	•	•	•	•	182
IXNotes on Riverain Surveys in the	Pu	njab	•	•	•	•		185

DUP BECH 22 AFEIL 1600

ļ

¢,

Digitized by Google

THE MAGNETIC SURVEY OF INDIA.

I

Extracted from the Narrative Report of Major H. A. D. Fraser, R.E., in charge No. 26 Party (Magnetic) for season 1903-04.

1. The following table shows the outturn of work by the field detachments Outturn of field work. during the season under review :---

	1	2	3	4	5	6	7	8	9
Observer.	Date of commencement of field work.	• Date of finishing field work.	Total days of field work.	New stations visited.	Old stations re-visited.	Duplicate stations occupied.	Total stations.	Average outturn per week.	Remarks.
Mr. P. Morton	8th November 1903.	5th May 1904 .	180	40		•••	40	1.20	Chiefly in difficult country in south- west India.
" R. P. Ray "	4th November 1903. 9th March 1904	23rd January 1904. 2nd May 1904 .	}136	59		•••	59	3 [.] 04	Railways.
" A. M. T alati	3rd November 1903.	26th April 1904	177	69		2	71	2.81	Railways.
"E. A. Meyer	5th November 1903.	10th February 1904.	98	33	I -		34	^{2.} 43	Railways and roads.
,, K. K. Datta	5th November 1903.	25th April 1904	174	32	21	•••	53	2.13	Chiefly in the desert.
TOTAL .	••••		765	233	22	2	257	2.35	

Statement showing the outturn by Field Detachments in the season 1903-04.

NOTE.-Columns 1 and 2 do not include the time spent on journeys before commencing and after finishing field work. At all stations complete observations of dip declination and intensity were made. The duplicate stations entered in column 6 are railway junctions visited by two observers.

During the two previous seasons 367 stations were visited so that the total number now amounts to 600. It is hoped that the remaining 500 stations* required to complete the fundamental survey of India and Burma will be completed in three seasons with an establishment of four field detachments. A great part of the remaining work lies in very difficult country and progress will be distinctly slower than in the last two years.

2. In all observations of declination and intensity the accuracy of the Accuracy of the work. Accuracy of the work. Accuracy of the work.

* The average interval between stations in the fundamental survey is 35 to 40 miles except in the most inaccessible tracts.

satisfactory. The dip circles in use are the best obtainable: they give results which compare favourably with those obtained by similar instruments in other countries, and are treated in the field with the same care as chronometers, being invariably carried by hand when on the march. As usual, however, some of them gave trouble in the field, and it is certain that the accuracy attainable by these instruments under field conditions compares unfavourably with measurements of declination as made with the survey magnetometers.

3. The first detachment, under Mr. Morton, commenced work at Mahá-Account of field work. the West Coast as far south as Cape Comorin. Owing to difficulties in the matter of transport this party was unable to finish its programme, but completed work at 40 new stations and returned to Dehra Dún on the 16th May 1904. Whilst working in the extreme south of India, the observer crossed the magnetic equator and visited several stations at which the needle was found to dip towards the south pole.

The second detachment under R. P. Ray commenced work at Lucknow on the 4th November 1903 and completed work at 59 new stations along the net-work of railway lines between that place and Calcutta. In addition the observer held charge of the magnetic observatory at Barrackpore from the 25th January to the 3rd March 1904 during the illness of the regular observer. Whilst at Calcutta observations were taken in the Botanical Gardens near the site occupied by Hermann Schlagintweit in March 1856. This work had to be done between midnight and 3 A.M. in order to avoid disturbances caused by the running of the electric trams.

The detachment under Mr. Talati worked along railway lines to the west of Lucknow observing at 69 new stations, besides two places also visited by R. P. Ray, making a total of 71 stations in all. In addition to the routine work at each station, a considerable number of extra deflections were taken, using a special suspended magnet of a different length from that ordinarily used. The results so obtained are interesting and will be dealt with later.

The fourth detachment under Mr. Meyer was employed in the south of India chiefly along railway lines, but owing to the illness of the observer at the Kodaikánal Observatory, Mr. Meyer had to be withdrawn from the field on the 11th February, after completing 33 new stations and repeating a declination observation at one old station.

The fifth and last detachment under K. K. Dutta, commenced by re-visiting a number of the first season's stations and subsequently filled in gaps in the Jaisalmer State and in the country between Quetta and the Indus river.

At the commencement and close of the season each observer made a set of comparative observations at Dehra Dún.

4. Lieutenant R. H. Thomas, R.E., was fully trained in taking magnetic Work done by Imperial officers. in charge, took observations at eight new repeat stations and nine old ones, besides taking comparative observations at four observatories and inspecting the field detachments whilst at work.

5. The following table shows the value of the distribution constant P during Values of P and of p and q in the distribution the past year :--

					_						
	E	FROM 2	82.2 AND	30 смз	•		P FROM	3 0 AND	40 CMS.		
Numbers of magnet.	Mean from all observations.	Adopted mean value.	Total number of observa- tions.	Number of rejected obser- vations.	Number of observations used in finding mean.	Mean from all observations.	Adopted mean value.	Total number of observa- tions.	Number of rejected obser- vations.	Number of observations used in finding mean.	Remarks.
ı A	7.55	7.53	171	6	165	7.83	7.88	162	28	134	
3 A	6 [.] 65	6 [.] 66	44	I	43	7.75	7.76	47	8	39	From 23rd October 1903 to 19th January 1904.
3 A	6.04	6.02	52	3	49	7.11	7.12	55	11	44	From 21st January 1904 to 19th May 1904.
4 A	7 .21	7'51	81	г	80	8.84	8.86	91	18	73	1904.
5 A	7*21	7.19	51	2	49	7.88	8.03	46	9	37	From 23rd October 1903 to 10th Febru- ary 1904.
5 A	7'47	7 [.] 47	9		9	8.33	8 ·3 3	9	•••	ò	From 20th April 1904 to 2nd May 1904 at Dehra.
6 A	7.88	7 .89	58	I	57	8.04	8.10	64	9	55	20110
10	5.77	5. 76	97	2	95	7:23	7.12	106	16	90	As used with sus- pended magnet of ordinary pattern.
10	-4.60	-4 *60	34	2	32	-2'81	-2.69	34	5	. 29	As used with special suspended magnet No. 10K.
16	6 [.] 91	6 [.] 88	102	8	94	8.22	8 [.] 55	105	22	83	1903.
17	7.45	7.45	137	5	132	8.07	8.10	141	24	117	1903.
20	6 ·8 4	6 [.] 80	. 42	2	40	7.61	7`57	44	8	36	From August to De- cember 1903.

TABLE A.

NOTE.—The moment of magnet 3A dropped suddenly about the 20th January 1904, and the values of P changed at the same time. The cause of the change is unknown. Magnet 5A was not in use often set. Followery 1904 till the second comparison was made at Dahra Dán in April

Magnet 5A was not in use after 10th February 1904 till the second comparison was made at Dehra Dán in April. The values of P were then found to have changed, though there was no apparent change in the moment.

In all the magnetometers used in this survey the ratio $\frac{\text{short}}{\log n}$ magnet $=\frac{1}{1^246}$, the dimensions of the long or deflecting magnet being length 365 inches, external diameter o'4 inch and internal diameter o'3 inch. Instrument No. 10 is also provided with a special short magnet No. 10 K. in which the ratio $\frac{\text{short}}{\log n}$ magnet $=\frac{1}{1^223}$, the dimensions of the long or deflecting magnet being as stated above.

The method used in rejecting extreme values of P is explained on page 40 of "Extracts from Narrative Reports, etc., season 1902-03."

Using the formulæ-

$$P_{r's} - P_{s's} = q \left(\frac{1}{r_1^{s}} - \frac{1}{r_3^{s}} \right) \text{ and} P_{r's} = p + q \left(\frac{1}{r_1^{s}} + \frac{1}{r_3^{s}} \right) + \frac{p \cdot q_{i}}{r_1^{s} r_3^{s}}$$

B 2

which are explained on pages 40 and 41 of the volume of "Extracts" above alluded to, the following table was compiled :---

M	lagnet. P _{1'2}		P _{1'2}	P.	p.	g. `	Remarks.
١A	•	•	7° 53	7.88	8.33	259	
3A	•		6.66	7.76	9.17		From 23rd October 1903 to
3A	•	•	6·05	7.13	8.20	-792	From 21st January 1904.
4 A	٠	•	7°51	8•86	10.20	-999	19th May 1904.
5A	•	•	7'19	8 [.] 03	9.08	622	From 23rd October 1903 to
5A	•	•	7 •47	8.33	9'43	—6 36	From 20th April 1004 to
6A	• •		7.89	8.10	8.37	-155	2nd May 1904.
0	٠		5.76	7 ^{.1} 5	8 [.] 94	-1,029	Using the ordinary pattern
0	•	•	 4 [.] 60	2.69	-0.24	-1,413	suspended magnet. Using suspended magnet
16	•	3	6.88	8.55	10 [.] 69	-1,236	No. 10 K.
17	•	.	7.45	8.10	8 [.] 93	481	
20			6·8o	7.57	8 · 56	570	

TABLE B. Tuble showing the values of $P_{1:3}$ and $P_{2:3}$ and of p and q for different magnets.

The next table shows the correction which would have to be applied to the computed values of log $\frac{m}{H}$ if the above values of p and q were used in the computation instead of the value of $P_{r,s}$ only. Thus the correction tabulated = Log. $\left(I - \frac{p}{r^{s}} - \frac{q}{r^{s}}\right) - Log \left(I - \frac{P}{r^{s}}\right)$.

	I	2	3	
Instru- ment.	$Log.\left(1 - \frac{p}{r^3} - \frac{q}{r^4}\right)$ $r = 22.5 \text{ cms.}$	$Log.\left(1 - \frac{P}{r^3}\right)$ $r = 22.5 \text{ cms.}$	Correction 10- ⁶ ×	Remarks.
I	1.9 9324	1,00340	-25	
3	1.99346	1 .99425	79	From 23rd October 1903 to
3	1.99401	1`99478	- 77	From 21st January 1904.
4	1.99254	1.99321	97	19th May 1904.
5	1,00351	¹ '99 379	58	From 23rd October 1903 to
5	1.99293	¹ '99354	61	From 20th April 1904.
6	1'99303 .	1.99318	-15	2nd May 1904.
10	1*99403	n.99203	100	Using the ordinary pattern
10	0.00259	0.0030 3	— 134	suspended magnet. Using suspended magnet
16	1 [.] 9928 6	1. 9 9 405	-119	No. 10 K.
17	1. 99 3 10	1.99356	—4 6	
20	1.99357	1`99412	-55	

TABLE C.

4

Taking the values of H at Dehra Dún equal to 0.334 C.G.S., the following table shows the charges in its absolute value which would result from taking account of the q term :--

TABLE D.

The change in the values of H (due to taking q term into account) at Dehra Dún in 1903-04.

Instrument.	Change in H. at Dehra Dán due to taking q term into account.	Remarks.					
	+ 107						
3	· + 307	From 23rd October 1903 to 19th January 1904.					
3	+ 307	From 21st January 1904 to 19th May 1904.					
4	+377						
5	+ 22γ	From 23rd October 1903 to 10th February 1904.					
5	+ 237	From 20th April 1904 to 2nd May 1904.					
6	+ 6γ						
10	+ 3 ⁸ 7						
ıok	+ 527						
16	· +46γ	Kodaikánal base station instrument.					
17	+ 18γ	Dehra Dún ", ", "					
20	+217	Barrackpore ", ", "					

H	at.	Dehra	Dún	=	.334	C.G.S	5.
---	-----	-------	-----	---	------	-------	----

It will be noticed in table B that the values of P obtained from the two suspended magnets used with magnet No. 10 in the deflection observations differ very widely and that in both cases the value of q is large. It is therefore, interesting to see whether the absolute results obtained with this instrument are brought into accord by taking account of the q term.

During the season observations were taken at 31 stations using both suspended magnets: if we denote the deflection observations taken with the ordinary and special suspended magnets respectively by the figures D_o and D_k , then the order of observation at each station is represented by $D_o - V - D_k$ where V stands for a vibration observation with magnet No. 10. In every case the complete set of observations was taken as rapidly as possible. By using the values of P_{12} given in table A and combining V with D_o and D_k , two values of the moment of magnet No. 10 are obtained at each station, which are exhibited in the following table: -

TABLE E.	
Values of the moment (m ₀) of magnet No. 10.	

DAT B.	I From D ₀ V.	2 From V—D _k .	Difference I — 2.	
20th November 1903.	863.02	863 ·34	0°32	
22nd " .	3.10	3·54	•44	

TABLE E.—continued.

Values of the moment (m₀) of magnet No. 10-continued.

	I	2	Difference	
DATE.	m ₀ . From D ₀ —V.	m₀. From V—D _k .	I — 2.	
24th November 1903	3:24	3.48	•24	
26th "	3 24	3 40 3.65	•24	
29th .	3 30 2•96	3°3 3.28	·27 ·32	
19th December 1903 .	2 90 2'96	. 3.18	32 '22	
21st "	3.28	3.38	·10	. ,
27th "	2.92	3.10	.18	
30th "	<u>з</u> •об	3.20		
3rd January 1904 .	3.10	3.22	•53 •20	
-1 h	3.10	3 55 3 · 44	·39 ·34	
7th "	3.20	3 44 3 * 50	·34	
7th "	3 20 2 96	3.26	·30	
- •4h	2 93 2 78	3.06	•28	
14th "	3.00	3.18	•18	
15th ", .	2.84	3.25	•38	
23rd " .	2·86	3.10	.30	
25th ,, .	3.04	3.52	•48	
28th ", .	2 90	3'14	•24	
2nd February 1904.	2 .92	3.28	•36	
4th "	2 [.] 74	3.04	.30	
6th " .	2.92	3.10	·24	
11th " .	3.02	3.22	· · ·20	
2nd April 1004 .	2.80	2.88	••08	
5th ,, .	2.60	2'94	•34	
7th " ,	3.10	3*40	•~>	
10th "	2° 40	2.22	12	
12th ", .	2.78	3'14	•36	
18th ,, .	2'70	3.04	·34	
20th " .	2°94	3.30	·26	
23rd » .	2.40	2.70	•30	
26th "	2.84	3.00	•22	
Means .	862.93	863.22	-0.53	

¢

٠.

.

Digitized by Google

We see therefore that the values of m_o differ considerably owing to the defective method of reduction used. If the method were correct we should expect to find the two mean values of m_o practically identical.

If now, instead of $P_{1,2}$ we use the values of p and q given in table B, two new values of m_0 will be found. Table C shows that in the case of D_0 and D_1 respectively the quantities -0.00100 and -0.00134 must be added to the previously computed values of $\text{Log } \frac{m}{H}$ in order to take the q term into account. To find the corresponding new mean values of m_0 it is only necessary to add one-half of these quantities to the Logs of the mean values of m_0 in columns 1 and 2 of table E, and take out the corresponding natural numbers. These new values are found to be (1) 861'94 and (2) 861'89. The difference between them, $\tau_{1.8}$, (1)-(2) is now +0.05, as against -0.29 derived from table E. The agreement is satisfactory and seems to justify the following conclusions:-

(1) The method adopted for deriving the values of p and q is reliable.

(2) In the expression $(1 + \frac{p}{r'} + \frac{q}{r'} + \cdots)$ for the distribution co-efficient, terms involving higher powers of r than r are negligible for magnets of the pattern used in this survey.

6. Referring again to table B, we find that the mean value of p for all the Average pole distance of magnets. by L and λ and the pole distances by 2L, and 2 λ , the expression for p=2L,² $-3\lambda_{,}^{2}$. Then assuming that $\frac{2L_{,}}{L} = \frac{2\lambda_{,}}{\lambda}$ (which is likely to be approximately true as the two magnets are of a similar type) and substituting 9.17 for p and 1.46 for $\frac{L_{,}}{\lambda_{,}} = \frac{L}{\lambda}$ in the equation $p=2L_{,}^{2}-3\lambda_{,}^{0}$, we find that $\frac{2\lambda_{,}}{\lambda_{,}} = 0.85$.

This value agrees closely with that found by Dr. Chree, F.R.S., when he examined the same survey instruments at the Kew Observatory, vide Phil. Mag. S. 6, Vol. 8 of August 1904.

7. A set of simultaneous observations was made in the two absolute houses, Comparison of instruments and houses in using magnetometer No. 17 (the standard) and No. 1. In what follows N.H. stands for north house and S. H. for south house, whereas in the last annual report the letters N. H. stood for new house, *i.e.*, for the existing south house. Using the method explained in the last report the following table exhibits the results of the comparison :--

TABLE F.

	Simultaneous declination observations.											
	DATE.		No. 17 in S. H. or $\frac{S. H.}{17}$.	No. 1 in N. H. or <u>N. H.</u>	X or S. H. N. H. 17 1	Observer.						
			0 / //	0 1 //								
5th No	ovember 1903	•	2 41 28	2 40 50	+ 38	H.A.D.F. and						
,,	"	•	41 14	40 4 0	39	S. D.						
,,	,,	•	41 06	40 27	39							
,,	33		40 52	40 16	36							
, , .	,,	.	40 55	40 09	46							
5th	,,		2 40 37	2 39 37	39 36 46 60							
,,	,,		40 31	39 34								
,,	,, ,,		40 18	39 28	50							
			40 22	39 16	57 50 66							
,,)) .)		40 11	39 16								
,,	ور	•	40 11	39 10	55 $Mean X = +48$							

Simultaneous declination observations.

NO. 26 PARTY (MAGNETIC).

	DATE.		No. 1 in S. H. or <u>S. H.</u>	No. 17 in N. H. or <u>N. H</u> .	$\begin{array}{c} X_1 \text{ or} \\ S. H. \\ I \\ \hline 17 \end{array}$	Observer.
5th N " " " " 6th "	ovember 1903	•	0 / 2 41 25 41 26 41 25 41 32 41 36 2 42 34 42 45 42 58	 o a 40 52 40 46 40 52 41 01 40 53 2 41 56 42 14 42 35 	" +33 +40 +33 +31 +43 +38 +31 +23 +3	H. A. D. F. and S. D.
))))))	•	43 00 43 09	42 28 42 41 _.	+32 +28 Mean X ₁ =+33	

Hence i or No. 17-No. $1=\frac{1}{2}(X-X_1)=+8''$ or $+0'\cdot 13$ and s or S. H. - N. H. $=\frac{1}{2}(X+X_1)=+41''$ or +0.68.

Earlier in the year a number of observations were made with the same instrument in both houses on the same day and a comparison between sites was obtained through the magnetograph curves.

		D		S. H. — N. H.			
28th M	larch	1903					+ 0′•30
<i>2</i> 4th	"	"·	•		•		•38
24th	,,	"	•	•	•		.28
27th	,,	,,	•	•		•	•28
31st	3)	,,	•	•			•26
7th A	April	"	•	•	• .		1.20
14th	57	"		•	•		[.] 84
14th	,	"	•	•	•	,	I*2 4
14th	"		•	•	•		1.10
17th	"	"	•	•			•58
21st	"	,,	•	•			•72
					. M	ean	+ 0'.70

The results were as follows :-

The result agrees well with that obtained in November and the value for the difference in site S. H.—N. H. has been accepted as +o'68 for all comparisons made during the year. In the followings tables of comparisons all observations taken in the N. H. have been corrected by the addition of this quantity :—

8

TABLE G.

Date.	No. of Instru- ment.	Site N. or S. H.	S. (Instruments under comparison.)	Standard	· D. DS. <i>β</i> .	D.Dβ. (D ₁ .)	S.—D ₁ .	Observer' initials.
13th March 1903.		S. H.	[•] ° , 2 41.05	o , 2 41.88	, +0 ^{.8} 3	o , 2 42'22	, —1·17	H. F.
ijen maren 1903.				-	-		-1.02	·
		"	40.43	41.12	0.23	41.49		,,
4th "••		»	40.23	41.02	0.83	41.39	-1.10	, »
th May 1903 .	T	N.H.	2 45'91	2 44.61	-1.31	44.95	+0.00	A. M. 1
		33	45.00	44'40	1.30	44.74	+0-86	"
		, ,,	44.41	43.68	°73	44.03	+0.30	"
3th " •		"	45'3ª	43.78	1.23	44.18	1.10	"
			•		$\beta = -0.34$		± 0'97	
6th December 1903.		N. H .	2 41'36	2 41.34	0'02	2 41.20	0.14	R. H. T
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	41.30	41'24	0°06	41'40	0.10	37
9th ,, •		,, ,	41.78	41.22	0.33	41 .7 1	+0.02	"
		,,	41.80	41.22	0.52	41.71	+0.00	"
		,,,	41.75	41.22	0.30	41.71	+0.04	"
		,,	41.75	41.22	0.30	41.71	+0.04	"
					$\beta = -0.10$		1 0.08	
gth May 1903	3	S. н.	2 41.85	2 41.47	-0.38	2 41.36	+0.49	R. P. R.
•		,,	41.97	41.88	0.00	41.77	0.30	"
oth ", •	34	,,	39.18	38.89	0.30	3 ^{8.} 78	0.40	"
		,,	39.72	39.01	0.11	39.20	0.33	"
		. "	40.42	40'33	0'12	40.33	0.33	"
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	41.03	40.85	0'18	40 [.] 74	0.30	,,
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	41.32	40.92	0.32	40.84	o · 48	"
31 st » •		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	40.50	39.82	o [.] 68	39.71	0.13	"
		,,	40'92	40.44	0.48	40.33	0.29	"
st June "•		,,,	37.63	39.21	+ 1.88	39.40	- 1 ·77	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	37.68	39.71	2.03	39.60	1.92	,,
				-	$\beta = +0.11$		±0.61	
and October 1903.		S. H.	2 41.28	0 40.04	+0.16	2 42.40	0.82	R. P. R.
			41.30	2 42.34	0.72	41.98	o [.] 78	
ath .		" N.H.		41'92		41 90 42 . 78	+0.53	"
e4th " •		1	43.01	42.72	0'29		0'19	"
	·	" S. н.	43.38	43.13	0.52	43.10		50
17t " •	'		41.80	41.48	0.35	41.24	0.30	17
.		n N LI	41.22	41*27	0.30	41.33	0'24	E1
28th ** *	'	N.H.	41.42	41.07	0.38	41*13	0.33	39
		"	41.08	40'66	0.42	40'72	0.30	-
	ł				β=0.00		±0.40	

Comparison of Magnetometers in declination: End of Field Season, 1902-03 and beginning of Field Season 1903-04.

TABLE G-contd.

29th ,, , , 40°41 40°35 0°05 41°01 +0°40 ,, , 41°48 41°18 0°30 41°83 -0°35 ,,			vegini	ning 0	FIELD S	eason, 190	3-04		·	,
27th April 1903 4 N.H. 2 39'41 2 38'40 -1'01 2 39'05 +0'36 K. K. D. 28th , . , 40'31 39'33 0'98 39'05 -0'02 , 29th , . , 40'31 40'35 0'05 41'01 +0'40 , 30th , . , 40'41 40'35 0'05 41'01 +0'40 , 30th , . . , 45'98 45'20 0'79 45'54 -0'14 , 30th , . <td< th=""><th></th><th></th><th>of Instra-</th><th>N. or</th><th>(Instrumen.</th><th>D. D₁. (Dehra Dún Standard No. 17.)</th><th></th><th>D. Dβ (D₁.)</th><th>S.—D₁.</th><th>Observer's initials.</th></td<>			of Instra-	N. or	(Instrumen.	D. D ₁ . (Dehra Dún Standard No. 17.)		D. Dβ (D ₁ .)	S.—D ₁ .	Observer's initials.
28hh , , $39'03$ $38'40$ $0'53$ $39'05$ $-0'02$, $agth$, , $40'41$ $40'36$ $0'05$ $41'01$ $+0'40'$, $30th$, , $41'48$ $41'18$ $0'30$ $41'83$ $-0'35$, $30th$, , $45'98$ $45'20$ $0'78$ $45'36$ $0'14$, $30th$, , $45'68$ $41'89$ $0'79$ $45'54$ $0'14$, $agth$, $45'68$ $41'89$ $0'79$ $45'54$ $0'14$, $agth$, $41'98$ $41'30$ $0'68$ $42'26$ $0'28$, $agth$, $41'98$ $41'30$ $0'68$ $42'26$ $0'28$, $agth$, $42'01$ $40'92$ $1'09$ $41'88$ $+0'13$, $agth$, $42'33$ $42'20$ $1'10$ $43'16$ $0'14$, $agth$, $A'3'$	27th April 1903 .	é	4	N.H.	1					K. R. D.
agth ,				,,	40.31	39*33	6 . 98	39'y8	0.33	"
30th,,,41'4841'18 $\dot{0}'30$ 41'83 $-0'35$,,30th,,,,,45'98,45'20 $\dot{0}'78$,45'85+0'13,,23rd October 1903N.H.237'8237'33-b'43238'29-0'51K.K. D.23rd October 1903N.H.237'8237'33-b'45238'29-0'51K.K. D.26th,,42'8841'30b'6842'260'28,,26th,,26th,,39th,,26th,,39th,,<	28th " •	•		,,,	39.03	38.40	0.63	39.05	0'02	"
30th ,, 4A ,, 45.'98 45'20 $b778$ 45'85 $+0'13$,, 23rd October 1903 N.H. 2 37'38 2 37'33 $-b'45$ 2 38'39 $-0'51$ K.K. D. 23rd October 1903 N.H. 2 37'78 2 37'33 $-b'45$ 2 38'39 $-0'51$ K.K. D. 26th ,, 41'98 41'30 40'92 1'09 41'88 $+0'13$,, 26th ,, 43'30 42'20 1'10 43'16 0'14 , ,, 44'88 41'58 1'39 42'25 0'13 , ,, 43'30 42'20 1'10 43'16 0'14 , ,, ,, 43'81 42'20 1'10 43'16 0'14 , ,, ,, 43'18 42'20 1'10 43'37 0'08 , , ,, ,, 43'18 42'20 0'98 43'16 0'02 , , , , ,	29th "	•		,,	40.41	40.35	0.02	41'01	+0.40	"
23rd October 1903N.H.237'98237'33 -0^{-79} 45'54 $0'14$ n 23rd October 1903N.H.237'98237'33 $-b^{+45}$ 238'29 -0^{-51} K.K. D.26th n 41'0841'30 b^{-68} 42'26 $0'28$ n n 42'0140'921'0941'88 $+0'13$ n 26th n 42'8841'581'3942'54 $0'34$ n 42'8841'581'3942'54 $0'34$ n n 43'3042'201'1043'16 $0'14$ n 28th n 43'8142'201'1043'75 $0'03$ n n 43'8142'200'9943'780'03 n $29th$ n N 43'4742'610'8643'357 $-0'10$ n $33'47$ 42'610'8643'357 $-0'10$ n n $33'47$ 42'610'8643'357 $-0'10$ n n $33'95$ $38'25$ $-0'85$ $38'63$ $+0'45$ n n $39'48$ $38'46$ 0'02 $38'84$ 0'64 n n $39'48$ $38'46$ 0'02 $38'84$ 0'64 n n n $40'15$ $39'70$ 0'45 $40'18$ 0'04 n a h h h $40'15$ $0'04$ $n'04$ $n'04$ a h h h				"	41.48	41.18	0.30	41.83	-0.32	"
23rd October 1903 . N.H. 2 37 98 2 37 33 -6^{-1} $\pm 0^{-25}$ $\pm 0^{-25}$ $(K.K. D5)$ $(K. K. D5)$ $(K. K.$	30th ", .	•	4a	"	45 98	45.20	b [.] 78	45.85	+0.13	"
23rd October 1903 . N.H. 2 37 78 2 37 33 $-b^{2}45$ 2 38 29 $-0^{\circ}51$ K.K.D. n 41 98 41 30 $b^{\circ}68$ 42 26 $o^{\circ}28$ n n 42 01 40 92 10 9 41 88 $+o^{\circ}13$ n 26th n . S.H. 42 88 41 79 10 9 42 75 01 3 n n 42 88 41 58 1 30 42 54 $o^{\circ}34$ n n 43 30 42 20 110 43 16 $o^{\circ}14$ n 28th n . N.H. 43 45 42 41 104 43 37 008 n n 43 81 42 82 $o^{\circ}99$ 43 78 $o^{\circ}03$ n 29th n . S.H. 43 18 42 20 $o^{\circ}98$ 43 16 $o^{\circ}22$ n n 43 347 42 61 $o^{\circ}86$ 43 57 $-o^{\circ}10$ n n 43 37 $30^{\circ}23$ n n 43 39 $38^{\circ}25$ $-o^{\circ}85$ 38 63 $+o^{\circ}45$ n n 39 05 38 25 $-o^{\circ}85$ 38 63 $+o^{\circ}45$ n n 39 04 15 39 70 $o^{\circ}45$ 40 08 $o^{\circ}7$ n 24th October 1903 . N.H. 42 75 41 89 $o^{\circ}86$ 42 27 $o^{\circ}48$ n				"	45.68	44.89	0.20	45.24	0'14	"
23rd October 1903 . N.H. 2 37 78 2 37 33 $-b^{1}45$ 2 38 29 $-o^{5}51$ K.K.D. n 41 98 41 30 $b^{6}68$ 42 26 $o^{2}8$ n n 42 01 40 92 10 9 41 88 $+o^{1}3$ n 26th n . S.H. 42 88 41 79 10 9 42 75 01 3 n n 42 88 41 58 1 30 42 54 07 4 nn 43 30 42 20 110 43 16 014 $n28th n . N.H. 43 45 42 41 104 43 37 008 nn$ 43 81 42 82 0 99 43 78 003 $n29th n . S.H. 43 18 42 20 o^{9}98 43 16 002 nn 43 37 42 61 086 43 57 -o^{1}0 nn 43 39 38 42 20 -o^{6}6 H^{3} h^{6} h^{6} h^{7} h^{7}n 43 90 h^{7} 42 61 h^{7} h^{7}$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							β≛0.02		±0'25	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•					
$26th$,, $42^{\circ}01$ $40^{\circ}92$ $1^{\circ}09$ $41^{\circ}88$ $+0^{\circ}13$,, $26th$,,S. H. $42^{\circ}88$ $41^{\circ}79$ $1^{\circ}09$ $42^{\circ}75$ $0^{\circ}13$,, n $42^{\circ}88$ $41^{\circ}58$ $1^{\circ}30$ $42^{\circ}24$ $0^{\circ}10$ $43^{\circ}16$ $0^{\circ}14$,, $28th$,, $43^{\circ}30$ $42^{\circ}20$ $1^{\circ}10$ $43^{\circ}37$ $0^{\circ}08$,, $28th$,, $43^{\circ}37$ $42^{\circ}20$ $1^{\circ}10$ $43^{\circ}37$ $0^{\circ}08$,, $29th$,, $42^{\circ}20$ $0^{\circ}98$ $43^{\circ}37$ $0^{\circ}02$,, $29th$,, $42^{\circ}20$ $0^{\circ}98$ $43^{\circ}37$ $0^{\circ}02$,, $29th$,, $43^{\circ}47$ $42^{\circ}61$ $0^{\circ}86$ $43^{\circ}57$ $-0^{\circ}10$,, $39th$, $4^{\circ}39^{\circ}22$ $0^{\circ}98$ $43^{\circ}57$ $-0^{\circ}10$,, $3th$ $4^{\circ}39^{\circ}25$ $-0^{\circ}86$ $43^{\circ}57$ $-0^{\circ}60$ E. A. M $39^{\circ}35$ $38^{\circ}25$ $-0^{\circ}85$ $38^{\circ}63$ $+0^{\circ}45$,, $39^{\circ}39$ $38^{\circ}46$ $0^{\circ}22$ $38^{\circ}84$ $0^{\circ}64$,, $39^{\circ}38$ $0^{\circ}42$ <td>23rd October 1903</td> <td>•</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>K.K.D.</td>	23rd October 1903	•				1				K.K.D.
$26th$,,S. H. $42^{2}88$ $41^{1}79$ $1^{1}09$ $42^{2}75$ $0^{1}3$,, n $42^{2}88$ $41^{1}58$ $1^{1}30$ $42^{2}54$ $0^{3}44$,, n $43^{1}30$ $42^{2}20$ $1^{1}10$ $43^{1}16$ $0^{1}14$,, $28th$,, $N.H.$ $43^{3}45$ $42^{2}41$ $1^{1}04$ $43^{3}37$ $0^{1}08$,, $28th$,,,, $43^{1}81$ $42^{2}20$ $0^{1}98$ $43^{1}78$ $0^{1}03$,, $29th$,,,, $43^{1}18$ $42^{2}20$ $0^{1}98$ $43^{1}16$ $0^{1}02$,, n ,, $43^{1}47$ $42^{1}61$ $0^{2}86$ $43^{1}57$ $-0^{1}10$,, p ,,,,,,,, $42^{1}61$ $0^{2}86$ $43^{1}57$ $-0^{1}10$ n ,,,,,,,,,,,,,,,, p ,,,,,,,,,,,,,, p				'n						"
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>6</i> .3								_	22
28th,, $43'30$ $42'20$ 1'10 $43'16$ $0'14$,,28th,,N.H. $43'45$ $42'41$ 1'04 $43'37$ $0'08$,,29th,,, $43'81$ $42'82$ $0'99$ $43'78$ $0'03$,,29th,,.S. H. $43'18$ $42'20$ $0'98$ $43'16$ $0'02$,,,,, $43'47$ $42'61$ $0'86$ $43'57$ $-0'10$,,,,, $43'47$ $42'61$ $0'86$ $43'57$ $-0'10$,,,,,,,, $43'47$ $42'61$ $0'86$ $43'57$ $-0'10$,,, <t< td=""><td>20th "</td><td>•</td><td></td><td>S. H.</td><td></td><td></td><td>1.00</td><td></td><td>_</td><td>>></td></t<>	20th "	•		S. H.			1.00		_	>>
28th , N.H. $43'45$ $42'41$ $1'04$ $43'37$ $0'08$, $29th$, , $43'81$ $42'82$ $0'99$ $43'78$ $0'03$, $29th$, S. H. $43'17$ $42'61$ $0'98$ $43'16$ $0'02$, n $43'47$ $42'61$ $0'86$ $43'57$ $-0'10$, sth S. H. $43'47$ $42'61$ $0'86$ $43'57$ $-0'10$, sth Sth September 1903 5 S. H. $2'40'30$ $2'40'52$ $+0'22$ $2'40'90$ $-0'60$ E. A. M. n $39'05$ $38'25$ $-0'85$ $38'63$ $+0'45$, n $39'05$ $38'46$ $0'02$ $38'84$ $0'64$, $6th$, , $40'15$ $39'70$ $0'45$ $40'08$ $0'07$, ath N.H. $42'75$ $41'89$ $0'86$ $42'27$ $0'48$ <t< td=""><td></td><td></td><td></td><td>"</td><td>42.88</td><td>41.28</td><td>1.30</td><td></td><td></td><td>39</td></t<>				"	42.88	41.28	1.30			39
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					43.30	42.30	1.10	43.10		"
29th,,,,,,,,,,,,,29th,,,<	28th "	•		N.H.	43.45	42.41	1.04	43.37	0.08	22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				"	43.81	42.82	0.99	43.78	0.03	99
Sth September 1903 . 5 S. H. 2 40'30 2 40'52 $+0'22$ 2 40'90 $-0'60$ E. A. M. , 39'05 38'25 $-0'85$ 38'63 $+0'45$, , 39'48 38'46 $0'02$ 38'84 $0'64$, 6th , 40'15 39'70 $0'45$ 40'08 $0'07$, , 40'22 39'80 $0'42$ 40'18 $0'04$, 24th October 1903 . N.H. 42'75 41'89 $0'86$ 42'27 $0'48$,	29th "	٠		S. н.	43.18	42.30	0.98	43.16	0'02	"
Sth September 19035S. H.2 $40^{\circ}30$ 2 $40^{\circ}52$ $+0^{\circ}22$ 2 $40^{\circ}90$ $-0^{\circ}60$ E. A. M.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	÷			,,	43.47	42.01	0. 86	43.57	0.10	"
Sth September 19035S. H.240'30240'52 $+0'22$ 240'90 $-0'60$ E. A. M.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							β =-0 .96		±0.18	>>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										
m 39'48 38'46 0'02 38'84 0'64 m 6th m 40'15 39'70 0'45 40'08 0'07 m m 40'12 39'80 0'42 40'18 0'04 m atth October 1903 N.H. 42'75 41'89 0'86 42'27 0'48 m	5th September 1903	•	5	S. H.	2 40.30	2 40.52	+0.33		-0.60	E. A. M.
6th ,, 40°15 39°70 0°45 40°08 0°07 ,, 24th October 1903 N.H. 42°75 41°89 0°86 42°27 0°48 ,,				"	39.02	38.22	-0.82	38.63	+0.42	"
24th October 1903 N.H. 42'75 41'89 0'86 42'27 0'48 "				"	39.48	38.46	0'02	38.84	0.64	"
24th October 1903 . N.H. 42'75 41'89 0'86 42'27 0'48 "	6th "	•		"	40.12	39'70	0.42	40'08	0.02	**
				"	40.33	39.80	0'42	40'18	0.04	"
" 41·76 41·07 0·69 41·45 0·31 "	24th October 1903	•		N.H.	42.75	41.80	0.80	42.37	0.48	, "
				,,	41.76	41.07	0.60	41.42	0.31	"
" 41·3I 40·86 0·45 4I·24 0·07 »				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	41.31	40.86	0.42	41.34	0.02	
" 41°18 40°45 0°73 40°83 0°35				"	41.18	40.42	0.13	40.83	0.32	
27th ,, , 40°45 39°90 0°55 40°28 0°17 "	27th "	•		"	40.42	39.90	0.22	40.38	0.12	92
" 40°43 40°12 0°32 40°50 —0°07 "				,,	4 0°43	40.13	0.32	40.20	-0.02	33
28th " · S. H. 41'05 41'07 +0'02 41'45 0'40 "	28th "	•		S.н.	41.02	41.04	+0.03	41.42	0'40	**
" 40°90 40°56 —0° 2 4 41°04 0°14 "				"	40.90	40.66	-0.34	41.04	0'14	"
β=0·38 ±0·11							β=0.38		∓9.11	

, si i

Comparison of Magnetometers in declination: End of Field Sedson, 1902-03 and beginning of Field Season, 1903-04....contd.

Digitized by Google

TABLE G-concld.

Date.		No. of Instru- ment.	Site N. or S. H.	ur	S. rument ider arison.)	Sta	• D ₁ . ra Dún ndard 0. 17.)	D. D–S. (β.)	D.Dβ (D ₁ .)	SD ₁ .	Observer initials.
nd May 1903 .		6	N.H.	0 2	, 41 . 40	。 2	, 41.80	, +0'40	o , 2 41.06	+0'34	Р. М.
na may 1903 •	•	Ū		-	40.32	-	41.18	-040 0.83	4 0'44	-0.00	"
			>>		40 33 39 [.] 88		40.87	0.02	40'13	0.52	,,
			"		39 00		40 07				
								β=+0 [.] 74		±0°23	
		1									
								•			
22nd October 1903			N.H.	2	42.83		42.24	0'29	2 42.23	+0.60	Р. М.
2.14 000000 1903	•		39		43.25		42.85	0 '40	42.24	0.21	, ,,
24th "			s.н.		40.52		42.72	+2.20	42;41	-1.80	,,
	,				40'92		43.13	2'21	42.82	1.30	"
26th "			,,		43.68		43'44	0'24	43.13	+0.23	"
			,,,		43.20		42.92	0.38	42.61	o*59	"
27th "	•		N.H.		41.80		41'48	0.32	41.17	0.63	· "
28th "	•		S. н		42 .47		42.41	0.00	42.10	o [•] 47	,,
			"		43 .83		42.82	0.01	42.51	0.33	*
								β=+0.31		±0.82	
23rd October 1903	•	10	N.H.	2	42.65	2	41 .98	0.62	2 42.15	+0.20	A. M.
			, ,,		43.11		42.43	0.28	42.60	0'41	,,
			S. H.				4 0 -	+0.40	42.00	-0.20	,,
24th " •	•				41.23		41.89	0.42	41'24	0.20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			>>		4 0°65 40°45		41. 07 40.86	0.41	41.03	0.28	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			**		40 45 39'90		40 00	0.22	40'62	0.72	
26th " •	-		" N.H.		42.31		40 45	-0.45	41.96	+0.32	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2011 » •	•		.,,,		42.03		41.28	0.42	41.75	0.38	,,
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		42.73		42'20	0*53	42.37	0.30	17
29th ". •			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		42.73		42.20	0.23	42'37	o •36	,,
	-				43.10		42.61	0'49	42.78	0'32	n
								1	1	1	

.

Comparison of Magnetometers in declination: End of Field Season, 1902-03 and beginning of Field Season, 1903-04-concld.

C 2

11

TABLE H.

17-	End of field season 1902-03.	Beginning of field season 1903-04.
I	-0.34	-0.02*
3	+0.11	- o·o6
4	- 0.62	-0 [.] 96
5	No comparison	-0·38
6	+ 0.14	+ 0.31
10	No comparison	-0.12

Abstract of Results of comparison of Magnetometers in Declination.

• This value is the mean of the quantities + o''13 and --o''16 which are independently arrived at in the previous tables.

9. The next table exhibits the results of the only comparison made between Comparison of houses in H.F. the north and south houses.

SOUT	H HOUSE.		NORTH	HOUSE.		
1	2	3	4	5		
DATE.	H.F. deduced from vibrations.	Correspond- ing values of base line.	H.F. deduced from vibrations.	Correspond- ing values of base line.	S. H.— N. H. <i>i. e.</i> (3)—(5).	Remarks.
·	C. G. S.	C. G. S.	C. G. S.	C. G. S.	γ	
26th March 1903	. 0.33482	0'33205	•33466	*0332 01	+4	Vibrations taken by chronograph with magnet 17.
	78	201	59	19 6	+5	Mean m _o =916.33.
	. 80	203	бо	198	+5	
	79	203	58	197	+6	
	76	201	62	202	1	
27th " "	. 63	200	68	210	-10	
	70	207	54	19 7	+ 10	
	6 6	203	56	199	+4	
	62	199	57	201	2	
	58	196	48	193	+3	
	59	206	56	201	+5	
	60	206	57	201	+5	
	48	194	60	205	-11	
-	60	206	53	198	+8	
	48	194	58	203	9	
			Mea	n S. H. – N.	$H_{\cdot} = + \tau_{\gamma}$	

TABLE J.

The difference between houses is therefore negligible.

10. At the end of field season 1902-03, each observer, on returning from

Comparison of instruments in H. F.

the field, took a set of force observations in one of the two absolute houses, whilst

at the beginning of the following field season, observations were taken between fixed hours by all the observers in tents pitched close to the absolute houses. The time available for comparisons was limited and many days would have been lost had observations been restricted to the north and south houses. Consequently four tents were pitched at safe distances, but close to the north and south houses, and each observer worked in these and in the north house in rotation, whilst extra observations were taken every day in the south house with the standard instrument. As there is no difference in intensity between the two houses and as the tents were only far enough away to avoid interference between the magnets, it is reasonable to assume that the site differences were nil. The base line of the magnetograph was derived from the special observations taken during the period of the comparison with the stand-The results obtained are exhibited below ;--ard instrument.

DATE.		No. of Inst.	S. (Inst. under comparison).	D. D. No. 17.	D. D.—S. <i>−β</i>	$\begin{array}{l} D. D \beta \\ = D_1. \end{array}$	SD ₁ .	Observer.
12th March 1903	•	I	•33469	•33464	-5	·33472	-3	H. F.
			468	463	5	471		"
			471	464	7	472	—ı	"
			472	466	6	474	2	99
zth "	•		463	458	· 5	466	-3	"
			463	456	7	464	-1	"
			463	455	8	463	ο	**
			468	456	12	464	+4))
14th "	٠		460	448	12	456	+4	37
			457	446	11	454	+3	
			458	445	13	453	+5	"
					β=8γ		±3γ	
							- -	
9th May 1903	•		*33443	•33429	—14	•33434	+9	A. M. T.
			427	434	3	429	-2	>>
			426	424	2	429	-3	39
			442	428	14	433	+9	35
11th "	•		435	436	+1	441	6	**
			436	437	· I	442	6	
			437	438	+1	443	6	20 21
			456	442	-14	447	+9	29 29
1 2th "	•		431	429	2	434	3	33
			433	428	5	433	0	3)
			433	426	7	431	+2	27
			427	425	2	430	3	,,,
					$\beta = -5\gamma$		±57	

TABLE K.

	(Compa	arisons of 1	nstrumen	ts in Hor	isontal F	orce.	
		No. of Inst.	S. (Inst. under comparison).	D. D. No. 17.	D. D.—S. - β	$\begin{array}{l} D. D \beta \\ = D_1. \end{array}$	SD ₁ .	Ов
3	•	I	•33469	•33464	-5	· 33472	-3	H. F.
			468	463	5	471		,,
			471	464	7	472	—ı	,,,
			472	466	6	474	2	"
	•		463	458	· 5	466	-3	"
			463	456	7	464		"
			463	455	8	463	ο	"
			468	456	12	464	+4	39
	•		460	448	12	456	+4	,,,
			457	446	11	454	+3	n
			458	445	13	453	+5	"
					β=8γ		±3γ	
							- -	
	•		*33443	•33429	—14	•33434	+9	A. M.
			427	4 24	3	429	-2	"
		1			1	1		1

TABLE K-contd.

DATE.		No. of Inst.	S. (Inst. under comparison).	D. D. No. 37.	D. D.—S. ≖ β	D. Dβ = P ₁ .	S. – D ₁ .	ØBŞERVER.
2nd November 1903	•	I	.33331	•33326	5	33333	i -i	Ŗ. Н. Т.
			324	325	.+ 1	831	घा 7	17
3rd "	, •		366	362	4	368	-2	93
			3 52	351	1	3,57	5	"
4th "	•		380	379		3 ⁸ 5	-5	"
٠		1	385	380	-5	386	-1	"
gth "	•	•••	400	391	9	397	+3	H. F.
			401	391	-10	397	+4	39
			401	390		39 6	+5	"
			397	387	10	393	+4	"
oth December 1903	.•		425	422	~3	428	-3	R. H. T.
			423	420	3	426	-3	"
			42 3	422	I	428	-5	"
oth "	•		467	456		462	+ 5	\$9
			459	454	5	460	-1	39
			452	445	-7	451	+1	27
			4 46	438	~ 8	444	+2	"
			373	37 I	-2	377	-4	97
			377	366		372	+5	"
					β=6γ		±37	
19th May 1903	•	3	•33413	· 33433	+20	·33420	7	R. P. R.
			412	434	22	421	9	33
			420	436	16	423	3	"
			416	436	20	423	-7	33
oth "	•		422	439	17	426	4	39
			423	437	14	424	1	33
			420	434	14	421	—ı	39
			41 6	430	14	417	I	33
st June 1903	•		439	443	4	430	+9	**
			436	441	5	428	+8	**
			434	438	4	42 5	+9	19
			429	434	5	421	+8	"
					β=+13γ		±6γ	
23rd Octob er 1903	•	3	·33383	•33 4 06	+ 23	.33386	-3	R. P. R.
		•	383	399	IQ	381	-+-2	39
			387	403	16	3 85	+2	29
			394	408	14	39 0	+4	"

Comparisons of Instruments in Horisontal Force.

Digitized by Google

TABLE K-contd.

Date.		No. of Hist.	S. (lpst. under comparison).	D. D. No. 17.	D. D.—S. —β	D. D/β ⇒Di.	S. —D₁.	Observer,
24th October 1903		3	, •33397	, .33415	+18	, 397	0	R. P. R.
	·	5	397	415	19	397	0	17
			401	418	17	400	+1	29
			396	415	19	397	I	»»
27th "			389	405	16	387	+2	33
	-		382	401	19	383	-1	39
		(379	397	18	379	0	,, • •
			369	393	24	375	6	, , , , , , , , , , , , , , , , , , ,
28th "			402	415	13	397	+5	
		•••	400	415	15	397	+3	
			398	413	15	395	+3	,,,
			393	412	-3 Iģ	394		19
			393	412	$\beta = +18 +$	594	±2γ	
28th April 1903	•	4	.33411	•3344 ²	+3 ⁱ	•33417	6	K. K. D.
			410	438	28	413	-3	"
			406	433	27	408	-2	>>
			402	428	26	403	—-I	"
29th "	•		425	450	25	425	o	» .
			419	453	34	428	9	"
			421	455	34	430	9	>>
			432	457	25	43 ²	0	"
30th "			422	447	25	422	0	3 7
			434	447	23	22	+2	39
			423	447	24	422	+1	"
			423	447	24	429	+1	,,,
1st May 1903	•		420	447	27	422	-3	n
~	-		428	447	19	422	+6	**
	-		430	447	Iÿ	422	+8	"
			439	448	16	423	+9	73
					β=+25γ	-	±4γ	
23rd October 1903	•		·33405	•33407	+2	•33399	+6	K. K. D.
			395	400	5	39 2	+3	"
			396	400	4	392	+4	"
-			393	405	12	397	-4	29
24th "	•		415	418	7	410	+1	9 D
		·	403	415	12	407	-4	"
			412	414.	2	406	+6	33
			410	414	4	406	+4	"

Comparisons of Instruments in Horisontal Force.

TABLE K-contd.

DATE.		No. of Inst.	S. (Inst. under comparison).	D. Đ. No. 17.	D· D.—S. =β	D. D.—β. —D ₁ .	S.—D ₁ .	OBSERVER
27th Octuber 1903	•	4	.33386	• 3 3405	+ 19	•33397	-11	к. к. d.
			400	402	2	394	+6	29
			397	398	I	390	+7	39
			377	3 93	16	385	8	>>
28th "	•	•••	412	416	4	408	+4	>>
			403	414	11	406	-3	27
. •			395	4(3	18	405	-10	79
			399	412	$\beta = +8\gamma$	404	-5	,,
					ρ-τογ		±5γ	
23rd October 1903	•	5	•33385	.33406	+31	.33408	-23	E. A. M.
			396	399	3	401	—5	»)
			396	400	- 4	402	6	25
			396	404	8	406	-10	>>
24th "	•		426	415	-11	417	+9	>>
			423	415	8	417	+6	"
			425	418	7	420	+5	>>
			433	417	16	419	+14	39
27th 🗭	•		411	405	6	407	+4	"
			409	402	7	4 04	+5	>>
			405	398	7	400	+5	"
			401	393	8	395	+6	37
28th »	•		· 417	415	2	417	0	"
			404	414	+10	416	-12	"
			405	413	8	415	-10	
			418	412	6	414	+4	3 2
					β=2γ		±8γ	
2nd May 1903	•	6	.33476	·33439	-37	-43470	+6	Р. М.
•			480	442	38	473	+7	"
			482	444	38	475	+7	"
			486	445	41	476	+10	8>
srd "	•		462	439	23	470	8	**
		1	468	439	29	470	2	»
			471	440	31	471	o	,,
			469	440	29	471	2	59
ath "	•		470	446	24	477	7	,,
			473	446	27	477	4	"
			475	444	31	475	0	"
			471	444	27	475	4	99 -
		1			β=-31.4		±5γ	

Comparisons of Instruments in Horisontal Force.

,

Digitized by Google

•

.

.

TABLE K-contd.

DATE.		No. of Inst.	S. (Inst. under comparison).	D. D. (No. 7.)	D.D.—S — β.	D.D. β=D ₁ .	SD1.	OBSERVER,
agrd October 1903	•	6	.33429	•33404	25	.33422	+7	P. M.
			424	400	24	418	+6	n
			431	404	27	422	+9	"
			434	409	25	427	+7	
24th "	•	•••	425	415	10	433	8	29
			425	415	10	433	8	29
			430	419	11	437	-7	23
			425	416	. 9	434	9	"
27th "	•		420	406	14	424	4	33
			416	404	12	422	 6	3 7
			413	400	13	418	5	"
			408	395	13	413	-5	, . ,,
18th "	•		. 440	415	25	433	+ 7	>>
			438	415	. 23	433	+5	,,
•			438	413	25	431	+1	ور `
			433	412	21	430	+3	»
					β=-18γ		±6γ	
								•
							6	A. M. T.
13rd October 1903	•	10	.33390	.33406	+ 16	•33396	· · ·	
			376	400	24	390		>>
			373	400	27	- 390	-17	33
			381	404	23	394	-13	90
24th "	•		415	416	I	406	+9	37
			413	416	3	406	+7	"
			415	418	3	408	+7))
			411	415	4	405	+6	**
27th "	•		398	406	8	396	+2	33
			. 392	403	11	393	—ı	33
•		·	350	400	10	390	0	**
			383	395	12	385	2	**
18th "	•		426	415		405	+21	"
			409	414	+5	404	+5	29
			407	413	6	403	+ 4	"
			398	412	14	402		39
30th "	. •		417	424	7	414	+3	58
			409	423	14	413	4	"
			407	421	· 14	411	4	"
			409	420	II	410	-1	3 7
					$\beta = +10\gamma$		±7γ	

Comparisons of Instruments in Horizontal Force.

D

TABLE L.

		5 0	
17-	End of field season 1902-03.	Beginning of field season 1903-04.	,
I	$\begin{cases} -8\gamma \\ -5 \end{cases}$	6γ	
3	+13	+ 18	
4	+ 25*	+8	
5	No comparison	-2	
6	-31		
10	No comparison	+10	

Abstract of results of comparison of Magnetometers in H. F.

• After this comparison was completed a fresh value of Log. 11³K was obtained and used in all subsequent work. Had the old value been kept the figure in the second column of the above table would have been +22y instead of +3y and it is clear therefore that instrument No. 4 has not changed appreciably during the year.

10. In arriving at the figures above given, the assumption was made that Description of the extra sites used in making comparison. Assuming the difference S. H.-N. H. = $+ 1\gamma$ to be correct, the whole of the observations taken from 23rd to 30th October were analysed for site errors and the results obtained were as follows :-

Calling the error of site 1 S₁, site 2 S₂, etc.,

S. H.— $S_1 = - 1 \gamma$ $S_2 = + 8 \gamma$ $S_3 = + 10 \gamma$ $S_4 = + 4 \gamma$ and applying these we get :— 17— $3 = + 11 \gamma$

 $4 = + 3\gamma$ $5 = - 6\gamma$ $6 = -24\gamma$

 $10 = +7\gamma$.

These results are possibly more correct than those given in Table L, but until further data for the site errors are obtainable it is considered advisable to neglect them. The following figure explains the notation used above in describing the sites and represents accurately the relative positions of observation:--

19

11. At the end of paragraph 6 above the conclusion was reached that our Cause of differences between magnetometers. Method of determining p and q from deflections at three distances is reliable. If then the differences noted in our magnetometers were due solely to errors arising from the neglect of the q term, one would expect these errors to vanish when that term is taken into account.

TABLE M.

Numbers of instruments.	Neglecting q term.	Using q term.
17-1	— 6 <u>y</u>	+ 2γ
17-3	+ 18	+ 6
17-4	+ 8	- 11
17-5	- 2	- 7
17—6	<u> </u>	- 6
17-10	+ 10	- 10

Comparisons of Magnetometers in H. F.

NOTE.—The figures in the second column are copied from the second column of Table L: those in the third are obtained by applying the corrections given in Table D. The agreement between instruments is distinctly improved but the differences are even now larger than the probable errors of observation. It is possible that the residual differences may be due to errors in the accepted values of the constants employed in the computations, notably the values of Log π^3 k and of r, the deflection distances.

12. During the year six dip circles were compared with the standard No. Comparison of N. and S. bouses in dip. Comparison of N. and S. bouses in dip.

TABLE N.

DATE.		_ <u>s</u>	in S. H. . <u>H.</u> 44	<u>_N.</u>	in N. H. H. 55	$\frac{S.H.}{44} - \frac{N.H}{^{135}}$	
1903.		0	,	0	,	· ,	· ·
28th May	•	43	-11'9	43	16.3	-4.	Needles 1 and 2 with No. 44.
31st "	•		17.2		12.3	5	3 Needles 2 and 3 No. 135.
31st "	•		15.7		13.2	4·(5
				Mean	n X=	4*	3

Simultaneous dip observations.

D 22 `

TABLE N-contd.

Date.		<u>S. H</u> 135	<u>I</u> .	<u>N. H</u> 44	<u>L</u> .	$\frac{S. H.}{^{1}35} - \frac{N. H.}{^{44}}$	Remarks.
1903		o	,	0	,	,	
29th May	•	43	14.4	43	12.3	+ 2`I	
29th ,,	•		11.0		14.3	-2.4	
30th "	•		13.0		11.6	+ 1.4	
30th ,,	•		14 •4		15.0	- 0·6	
				Mean	$X_1 =$	+ 0.1	
		Hence S	S. H. 	N. H 🕳	■ —2'·4		
		and 44	41 -8 —	1359-1 =	=2'.5		

Simultaneous dip observations-contd.

Dat e .	<u>S. H</u> . 44	<u>N. H.</u> 137	$\frac{S.H.}{44} - \frac{N.H.}{137} = X.$	Remarks.
1903	o /	• •	,	
27th April	43 13.2	43 14'2	-1,0	Needles 1 and 2 with No. 44.
	15.2	13.0	+ 2.2	Needles 1 and 3 with No. 137.
•	10.3	13.3	-2.0	
	10.2	10.2	~ 0'2	
	11.4	12'4	-1.0	
	11.3	10.8	+0.2	
		Mean X=	o`4	

DATE.	<u>B. H.</u> 137	<u>N. H</u> 44	$\frac{\frac{S. H.}{137} - \frac{N. H.}{= X_{1}}}{= X_{1}}$	Remarks.
1903	0 /	• •	,	
ıst May .	43 11.8	43 15.0	-3.6	
	9'9	14-1	-4.3	
	8.6	10.2	-1.0	
		Mean $X_1 =$	-3.3	
	Hence S. H. and 441.8	-N. H. = -1.8 -1.71.5 + 1.4		

۰.

TABLE N-contd.

Simultaneous	dip observations-	contd.
--------------	-------------------	--------

Date.	S <u>. H.</u> 44	<u>N. H.</u> 138	$\frac{\frac{S. H.}{44}}{=X} \frac{N. H.}{\frac{138}{138}}$	Remarks.
1903. 1th May . 5th " . 7th " .	o / 43 12 [.] 2 13 [.] 1 12 [.] 4	° ' 43 17 [.] 8 16 [.] 2 15 [.] 7	-5.6 -3.1 -3.3	Needles 1 and 2 with No. 44. Needles 1 and 2 with No. 138.
, , , , , , , , , , , , , , , , , , ,	+	Mean X =	<u> </u>	
	1]
DATE.	<u>Ş. H.</u> 138	N. H. 44	$\frac{\underbrace{S. H.}_{138} - \underbrace{N. H}_{44}}{= X}.$	Remarks.
1903 4th May .	° ' 43 I5'5	° , 43 13 [.] 6	, , ,	
5th ".	16.1	13.2	- 2.6	
7th ".	5.9	· 12·2	+ 3.7	
		Mean $X_1 =$	+ 2.7	
	Hence S. H	N. H. =	o'·7	
	and 441.5-	138 _{1.2} =	-3'4	
Date.	<u>S. H.</u> 44	<u>N. H.</u> 140	$\frac{\frac{S.H}{44} - \frac{N.H.}{\frac{140}{2}}}{= X.}$	Remarks.
1903. 4th September	• •	° ' 43 16·8	-2.8	Needles 1 and 2 with No. 44.
6th "	13.2	15.7	-2.0	Needles I and 2 with No. 140.
7 th ,, .	12.1	17 [.] 0 Mean X =	<u> </u>	-
		J 	1	
DATE.	<u>S. H</u> . 140	<u>N. H.</u> 44	$\begin{vmatrix} \frac{S.H}{140} & -\frac{N.H}{44} \\ = X_1. \end{vmatrix}$	Remarks.
	0,	0 /	, + 0.3	
1903 4th September	43 15.1	43 149		1
4th September	43 15.1	43 14 9 15 9	-2'I	
4th September	43 15.1			-

TABLE	N-concid.
-------	-----------

Simultanecus dip observations-concld.

DATE.	<u>S. H.</u>	<u>N H.</u> 136	$\frac{S. H.}{44} = \frac{N. H.}{136}$	Remarks.
	- 44	136	= X.	
1903. 8th May	• 43 10'9	° ' 43 11 [.] 8	, —0.ð	Needles 1 and 2 with
9th "		13.0	-2.0	No. 44. Needles 2 and 3 o
rith "	10.0	12.6	-2.6	No. 139 were used in No. 136.
		Mean X=	-1.8	
Дате.	S. H. 136	<u>N. H</u> . 44	$\frac{S.H}{_{130}} - \frac{N.H.}{_{44}} = X_{1}.$	Remarks.
1903 81h May	0 /	0 /	,	
11th "	43 II'5 J2'4	43 12.4	- 0.0	
12th "	12'9	12.5	-0°1	,
,		Mean $X_1 =$	-0.2	
	Hence S H.— and $44_{1\cdot 3}$ —	N. H. = $136_{\frac{9\cdot9}{13'9}}$ =	-0.2	l l
		, ,	1	· · · · · · · · · · · · · · · · · · ·
Date.	<u>S H.</u> 44	$\frac{N. H.}{43}$	$\frac{\underbrace{S.H.}_{44}}{=X} \underbrace{\frac{N.H.}_{43}}_{=X}$	Remarks.
1903 5th November .	° , 43 20°1	° ' 43 20.2	, , ,	Needles 1 and 2 with
, th	17'5	13 -0 -	0 ^{.6}	No. 44. Needles 2 and 4 with
8th ,, .	19.6	, 18 . 0	+0.2	No. 43.
7th December .	16.9	19'2	-2.3	
		Mean X ₁ .	<u> </u>	
		······		
Date.	<u>S. H</u> 43	<u>N. H.</u> 44	$\frac{\underbrace{S.H.}_{43}}{=X_{1}} \underbrace{\xrightarrow{N_{\bullet}H.}_{44}}_{44}$	Remarks.
1903 th November .	° / 43 17°6	° ' 43 19 [.] 1	,	
th ,,	18.4	19 [.] 9	—1·5 —1·5	
ι h ,, .	16.2	18.1	<u> </u>	
7th December .	20.8	. 17'4	+ 3.4	
	Hence S. H. and 441.2-	$Mean X_{1} = -N. H. = 43_{3'4} = -100$	0°3 0°5 0°2	

•

Abstracting the values for the difference in dip between the two houses we get-

S. H. -N. H. =
$$-\frac{1}{6}$$
{2'4+1'8+0'7+1'4+1'2+0'5}
= $-1''3$.

This value has been accepted and applied to all observations taken in the north house during the year 1903. At the beginning of field season 1903-04, the field dip circles were tested by simultaneous observations taken against No. 44 which was kept in the south house throughout. The other instruments were erected in rotation at the different sites alluded to in paragraph 11. The site errors of sites Nos. 1, 2, 3 and 4 were assumed to be *nil* when computing the results given in the following abstract :--

44 1·2	End of field season 1902-03.	44 1' 2	Beginning of field season 1903-00
439.4	No comparison.	432-4	-0.3
I 353-8		I 35 2- 8	+0.1
136 <u>9.8</u> 139	<u>~</u> 0.7	136 ₁ .,	-0.9
1371-8	+ 1'4	137 _{1•8}	+ 1'0
1381.2	3'4	1 38 ₉₋₃	 0.9
1401.3	No comparison.	140 _{1.2}	- 0'4
		I 40 ₉₋₈	—о·б

TABLE O.

These comparisons show that the dip circles are in fair agreement at Dehra Dún where the inclination is slightly over 43°. They do not tell us anything about the agreement to be expected in other magnetic latitudes, and it is therefore very questionable whether field results should be corrected for the instrumental differences determined at Dehra Dún only. This question will have to be considered shortly when the reduction of the field observations is taken in hand. Meanwhile the biennial comparisons with the Dehra Dún standard will be continued, as they at all events serve to show whether the field instruments are changing or not.

13. In the last report a list was published of the accepted values of Log.

 π^{*}k for the whole of the survey instruments (except No. 2). It has all along been intended to check as many as possible of these values every year during the recess season. With this idea in view, No. 4 magnetometer was tested with magnet 4 A suspended and the standard inertia bar No. 2, and observations were taken as explained in paragraph 15 of the Annual Report for 1901-02.

23

The results shown in the table which follows gave a new mean value of Log. $\pi^{3}k$ for magnet 4 A of 3.37972, *i.e.*, an increase of 0.00036 over the accepted value, and as the observations seemed to be at least up to the usual standard of accuracy, it was thought that a real change had occurred and the new value was therefore used in all computations from and after the 23rd October 1903. Shortly afterwards new values were computed out for magnets 1 A, 3 A, 5 A, 17 and 19, and in every case considerable changes were noted, though in no instance was any explanation forthcoming which could account for the alteration. As these changes were not in accordance with previous experience it was decided to adhere to the original accepted values in every case except that of magnet 4 A, the new value of which had already been made use of.

The comparisons of instruments in intensity which are published in a previous paragraph clearly indicate the absence of any considerable changes in any of the magnetometers during the recess season of the year 1903, and in the case of magnet 4 A the change actually found is almost wholly accounted for by the adoption of the new value of Log. π 'k. It is therefore reasonably certain that as far as this period is concerned there were no considerable changes in the moments of inertia of the magnets, but it remains to be seen whether the comparisons of instruments at the end of season 1903-04 will support this view. These comparisons have not yet been worked out and further discussion of this point must therefore be deferred for a future report.

-	INERTIA B	AR No. 2.			INERTIA BAR	No. 17.*	
Magnet Number.							
1 A	3 A	4 A	5 A	17	19		
370824 870 710 586 602 734 825 791 791 620 575 688	3 [.] 3 ⁸⁸ 037 8132 8146 7977 937 888	3.379679 735 681 757 856 676 674 746 756 855 823 605 705 793 814 756 788 664 575 561 615	3 [.] 379461 491 195 206 281 236	3.415454 441 398 401 437 410	3'384904 4952 4919 4852 5°74		
3.370718	3.388020	3.379720	3.379312	3.415434	3.384940		

TABLE P.

• All results de ived from Inertia bar No. 17 require to be corrected by the addition of 0'000239 in order to make them comparable with those obtained from Inertia bar No. 2.

Magnet Number.	Inertia bar used.	Published value of Log. π^{s} K.	New value of Log. $\pi^3 K$.	Published — New.	
1 А	2	3.37046	3.37072	-0'00026	
3 A	2	3 .3 ⁸ 733	3.38802	o-ooo69	
4 A	2	3•37936	3 37972	<u></u> 0*00036	
5 A	2	3 [.] 37 ⁸ 94	3*37931	0:00037	
17	17	3.41519	3:41566	+ 0.00013	
19	17	3 .38496	3.38218	0'00022	

TABLE Q.

From the last of these tables it will be seen that the values found during the year 1904 differ very largely from those previously accepted. The two inertia bars used appear to be in perfect condition, whilst no injury has occurred to any of the magnets tested, nor have they been altered in any way. Further tests will be made during the ensuing recess season, but it is not proposed to make any change in the accepted values now used for reduction, and all new values found will be utilized subsequently as may seem best. The following is a list of the accepted values of Log. $\pi^{2}K$ for all magnetometers at present in use:—

TABLE R.

Magnet number.	Log. π^{3} K	
т А	3.37046	
3 A	3 [.] 3 ⁸ 733	
4 A	3.37972	
5 A	3.37894	
6 A	3.39887	
IO	3.40173	
16 ·	3.38717	
17	3.41579	
19	3 [.] 38496	
20	3.39954	

Accepted values of Log. π^{3} K.

Е

15. During the year under report the instruments were distributed as Distribution of magnetic instruments.

Observatories or field instruments.			MAGNETO- GRAPHS.					
			Horizontal force.	Declination.	Magnetometers	Dip circles.	R emarks.	
Dehra Dún	•	•	τ	I	17	44	Magnetometers Nos. 1 to 6 and No. 10 are by Messrs. Cooke and Sons.	
Kodaikánal	•	r	2	2	16	46	To are by messis. Cooke and Sons.	
Barrackpore	•	· .	3	3	20	45	Magnetometers Nos. 16, 17 and 20 are old Elliott instruments, altered by Messrs. Cooke and Sons.	
Captain Fraser	•	•			I	43	by messis. Cooke and Sons.	
Lieutenant Thomas .				I	43			
Mr. Morton	•				6	138	Dip circles 135 to 140 are by Dover.	
R. P. Ray	•				3	135	Dip circles 44 to 46 are by Barrow,	
Mr. Talati	•	•			10	136	repaired by Dover.	
,, Meyer	•				5	140		
K. K. Datta	•	•			4	137		

Dip circle No. 139 was under repair in England and was not received back till July 1904. The new dip circle was not received, but the H. F. and declination magnetographs for the Burma Observatory arrived in June 1904, as also the first of the four vertical force magnetographs. An earth inductor has been ordered from Schultze and a second instrument of the same kind will shortly be indented for.

16. The results of the field work are exhibited in the table below and the General remarks. General remarks.

Owing to the large outturn of field work and the accumulation of records at base stations, special steps were taken during the recess season to strengthen the party and it is satisfactory to note that there are now no arrears of work excepting a few comparisons made at base stations during the last two years. A special staff consisting of one spare observer and two computers has been added to the party in order to deal with observatory tabulations and work connected with the final reduction of the field results. In addition to these duties the spare observer is also available for the relief of the regular observers at base stations when absent on leave or on account of sickness.

Owing to difficulties in obtaining suitable men for the base station observatories, it has been decided to utilize one of the existing field observers in that capacity, so that during the next field season there will be only four detachments at work. However, there is every reason to hope that even with this reduced staff the field work contemplated in the scheme for the fundamental survey will be completed at the end of season 1906-07.

26

The tabulation of the results obtained at Dehra Dún, Kodaikánal and Barrackpore observatories are published to the end of 1903. Those for the year 1904 are nearly ready and it is intended to bring the next report up to date by publishing results for 1904 and 1905 together.

Name of observatory.	Latitude.	Longitude.	Mean Dip.	Mean Declination.	Mean Horizontal Force.	Remarks.
	0 / //	0 1 11	0 /	0 /		
Dehra Dún .	30 19 19	78 3 19	43 13.9	E 2 41.6	*3 3430	
Kodaikán a l .	10 13 50	77 27 46	3 5.3	W 0 23 · 4	.37 367	Declination is given for last 5 months only.
Barrackpore .	22 46 29	88 21 39	30 17.7	Е 1 25.8	•37198	Last 5 months only.

The mean values of the magnetic elements at the observatories for the year 1903.

Abstract showing the approximate magnetic values at stations observed at by No. 26 Party during season, 1903-04.

	Name of Station.	Survey No.	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force,	RBMARKS.
Serial No.			0 / //	0 / 4	• /	• •	C.G.S.	
371	Ratagaon (Vijá- pur).	3 2 8	19 56 40	74 45 50	24 55	E o 50	o [.] 3685	
372	Aurungábád .	** 3	19 51 30	75 20 20	24 35	" 0 50	0 [.] 3695	
373	Jálna	" 4	19 51 50	75530	24 35	"I5	o [.] 3685	
374	Satona • •	" 5	19 29 30	76 21 30	23 40	" 0 55	0'3710	
375	Parbhani	"6	19 15 20	76 46 50	23 30	" o 55	0'3715	
376	Nander	₿8 1	19 9 30	77 18 10	23 30	"020	0*3705	
377	Dharmábád (Bálápur).	<u>}8</u> 1	18 53 10	77 51 30	22 35	" 0 30	0 .3 730	
378	Upalwai	n, 2	18 25 10	78 19 20	21 35	"° 35	0.3740	
379	Masaipet	<i>»</i> 3	17 52 40	78 27 30	20 15	"010	0.3220	
380	Alir .	18 2	17 38 30	79 2 50	19 50	" 0 30	0.3220	
3 91	Warangal .	" I	17 58 40	79 36 50	22 20	" 0 25	o [.] 3755	
382	Mánukota .	" 3	17 36 0	80 0 10	19 25	"I IO	0.3802	
383	Bona Kalu .	», 4	17 2 0	80 15 50	18 35	"оо	o · 3775	
384	Bezwada	16 I	16 31 0	80 36 50	17 10	" 0 0	o'3805	
3 85	Bápatia	" 2	15 54 3D	80 27 40	16 25	"°35	o ·3775	
386	Ongole .	» 3	15 30 20	80 3 20	13 45	,, 2 IO	o [.] 3855	

E 2

,

No.	Name of Station.	Survey No.	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force,	Remarks.
Serial No.			• • "	• • •	• /	• /	C .G .S.	
387	Bitragunta .	188 7	14 48 40	79 57 20	13 40	W º 35	0*3805	
388	Arambákkam .	,, 8	13 32 40	80 4 30	10 50	" 0 20 [°]	0 ·3820	
389	Acharapákkam	18 9	12 24 10	79 49 10	6 50	" ⁰ 55	o:378 0	
341	Villupuram .	" 5	11 56 40	79 29 50	•••	E o 15		Declina- tion only
390	Eringi	" 10	11 35 50	79 IO 20	5 35	W o 25	o [.] 3775	re-observ- ed.
391	Atúr	}} 10	11 35 40	78 36 50	6 25	"o 25	0 [.] 3840	cu.
392	Perambalúr .	" 12	11 14 10	78 51 50	5 30	"035	0 . 3835	
393	Pudukottái .	} 8 4	10 22 50	78 48 50	3 40	" 0 30	0 ·3 795	
394	Satubara . Chattram	» 5	10 14 50	79 16 50	2 40	" 0 35	o [.] 3805	
395	Tiruppattúr .	,, 11	10 7 10	78 3 6 o	2 5 5	" o 55	o•3805	
396	Nattam	" IO	10 13 40	78 I4 O	3 0	,, 040	0.32 0	
39 7	Palmanér .	} ≹ 14	13 12 20	78 44 50	9 45	" 02 5	0 ·3 805	
398	Madanapalle .	" 19	13 34 40	78 • 30 30	10 35	"015	0.3810	
399	Páragada .	" 12	14 6 20	77 17 10	12 0	Εοο	o [.] 3795	
400	Kalyándrug .	,, II	14 32 50	77 6 40	13 15	W 0 20	0.3262	
401	Hangal	}8 6	14 44 10	76 41 50	13 5	"05	o [•] 3785	
402	Chalakere .	" 8	14 19 0	7639 O	12 20	" 0 5	o [.] 3795	
403	Hiriyúr	33 IO	13 56 30	76 36 40	11 25	" 0 5	0.3790	
I	Pavdásán .	# 3	24 29 20	71 53 5 0	33 45	Е 1 10	o .3520	Re-observ- ed.
2	Sáchor	" 2	24 45 20	71 45 50	33 55	"140	0.3520	do,
3	Dutwa	,, I	24 52 50	71 28 50	34 0	"20	0'3495	do.
4(<i>a</i>)	Sheria Bheel (a)	# 8 I	24 43 50	70 52 50	33 25	" I 4 5	0.3200	do.
5	Tur Loonian .	"2	24 39 0	70 31 40	34 5	" 2 15	0.3202	do.
6(a)	Islámkot (a) .	» 3	24 42 10	70 9 5 0	33 3 5	"I 20	0.3245	do.
7(a)	Dipla (a) • •	" 4	24 28 0	69 34 3 0	33 25	"20	o.34 80	do.
8	Rahím-ki-Bazár	» 5	24 19 0	6990	32 55	"I <u>5</u> 0	0.3495	do.
9	Kirria	** 3	24 20 0	68 46 40	3 ² 45	" 140	0'3500	do.
10(a)	Lachpat (a) .	50 4	23 49 20	68 46 20	31 55	" I 45	0.3210	do.
11(a)	Murr (a)	<i>»</i> 5	23 33 20	68 56 4 0	31 45	"20	0.3520	do.
1 2(<i>a</i>)	Nakhtrana (a) .	\$ * 6	23 20 50	69 15 10	31 30	" I 35	0'3525	do.
13	Kalyánpur .	" 8	23 13 40	6 9 35 40	30 55	"I 15	o 3555	do.
14	Bhímasar .	"9	23 11 20	70 9 50	30 30	" I 5	0'352 5	do.
15(a)	Lákadiya (a) .	» 7	23 20 30	70 34 40	31 30	"I 5	0.3210	do.
16(<i>a</i>)	Adesar (a) .	" 10	23 33 30	70 59 10	31 35	"I 15	o [.] 3545	do.
17	Váráhi	7 4 10	23 47 50	71 26 20	31 55	"I 25	o [.] 3545	do.
18	Diodar	, ,, 7	24 6 30	71 46 10	32 25	,, 1 30	0 [.] 3550	do.
404	Lohana (Jas-	" 14	24 47 20	72 27 10	33 40	" I <u>35</u>	0.3540	
4°5	wantpura). Jálor	<u>₹</u> § 12	25 21 10	72 36 50	34 40	" I 20	0.3200	

Abstract showing the approximate magnetic values at stations observed at by No. 26 Party during season, 1903-04—contd.

28

 $\mathbf{\tilde{}}$

		-	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force,	REMARKS.
Serial No.	Name of Station.	Survey No.	o , ,	o / w	o /	• /	C. G. S.	
406	Mandaula G. T. S.	7 <u>9</u> 11	25 24 50	71 52 10	35 5	E 2 0	0.3515	
407	Wallar	" 9	26 29 10	71 48 40	39 55	"220	0 .347 0	
408	Mandái, G.T.S.	" 10	26 21 10	71 10 40	36 20	"I 50	0.3460	
409	Jejrawa	\$8 13	26 15 20	70 38 50	36 15	"20	0 [.] 34 45	
410	Ráviláhu, G.T.S.	" I2	26 52 40	70 2 20	37 25	"210	0.3425	
411	Khubba	,, II	26 49 10	70 40 10	37 25	"210	0.3422	
412	Kakrasar	7 5 8	26 55 40	71 12 10	37 35	" 2 25	0.3430	
413	Hardikot, G.T.S.	"7	26 57 30	71 51 00	3 8 35	» 3 5	0.339 0	
414	Satiaya	₿8 14	27 25 20	71 39 10	38 15	"240	0. 33 80	
415	Deega	" 15	27 24 20	7100	38 25	" 2 20	0. 3400	
416	Kolu, G.T.S.	78 14	27 25 10	70 17 30	38 25	,, 2 10	0°3405	
26	Reti	" 3	28 5 10	69 51 20	39 25	"240	0.3362	Re-observ- ed.
54(a)	Sibi (a) • •	80 88 I	29 32 40	67 51 40	41 50	"245	0.3225	do.
4 ¹ 7	Lehri	" II	29 10 40	68 12 40	41 15	"220	0.3300	
418	Chirdi Dhabbar	" I 2	29 5 20	68 43 10	4 0 5 5	" 2 25	0.3310	
4 19	Derah Bugtí .	\$8 15	29 2 0	69 9 20	40 50	" 2 35	0.3312	
420	Chat	" 14	29 20 20	6 9 24 3 0	41 25	" 2 40	0'3 3 05	
421	Mat	" 13	29 42 20	6940 O	41 5 5	" 2 50	0*3290	
422	Rakni	" I2	30 2 50	69 55 30	42 25	" 3 O	0.3285	
423	Kingri	,, II	30 26 20	69 49 0	43 [·] 5	» 3 5	0°3265	
4 24	Músa-Khel Bazár	"9	30 52 30	69 48 5 0	43 45	,, 3 10	0'324 5	
425	Mekhtar	" 10	30 29 0	69 20 20	43 5	" ² 55	0.3260	
426	Fort Sandeman ,	18 7	31 20 40	69 27 1 0	44 25	" 3 15	0.3220	
427	Musáfirpur .	#8 8	30 58 O	69 8 3 0	43 50	" 3 0	0'3240	
428	Kalu Killa	88 7	30 41 40	68 43 20	43 25	" 2 55	0.3250	
429	Killa Saifulla .	"6	30 42 50	68 21 10	43 25	" 3 5	0.3240	
430	Hindu Bágh .	" 5	30 49 20	67 44 30	43 40	"зо	0.3220	
431	Chinjan	" 8	30 34 10	67 55 50	43 0	"зо	0.3340	
432	Loralai	,, 9	30 21 30	68 36 3 0	42 55	,, 2 50	o'3255	
433	Puzza	,, 10	29 54 0	68 42 40	42 15	" 2 45	0'3275	
434	Ferozepore .	12 A	30 57 50	74 36 10	44 3 ⁰	" 2 30	0.32 50	
435	Moga	\$8 14	30 49 40	75 10 30	44 0	" 2 55	0.3295	
69	Ladhowál.	,, I	30 59 O	75 47 20	44 20	" 2 55	0 .3290	Re-observed.
436	Mahábaleshwar	+2 7	17 55 50	73 39 40	20 35	" 0 5	o [.] 3680	
437	Helwák	,, 8	17 22 20	73 43 10	19 5	"040	0.3212	
438	Ámba	11 7	16 58 20	73 47 50	19 IO	"020	0.3212	
439	Dájeepur .	0	16 22 40	73 52 40	17 30	" 0 5	o [•] 3755	
440	Rámghat .		15 49 40	74 6 20	15 45	" 0 35	0 .3660	

x

Abstract showing the approximate magnetic values at stations observed at by No. 26 Party during season, 1903-04—contd.

°o. N	Name of Station.	Survey No.	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force.	Remarks.
Serial 1				0 / //	• /	• •	C. G. S.	
441	Yellápur	} ŧ 1	14 57 40	74 42 30	I3 55	Wo 5	o [.] 3765	
442	Banvási	}8 7	14 32 20	75 1 10	¹ 3 5	" 0 5	0.3720	
443	Mauvinhola .	" 9	13 59 10	75 6 20	11 45	" ° 5	0.3772	
444	Koppa	" II	13 31 50	75 19 30	IO 35	"025	o [.] 3785	
445	Beltángády .	18 8	12 59 10	7 5 17 0	9 40	" 0 25	o [.] 3780	
446	Sullia	" I2	12 34 20	75 23 20	8 40	" 0 15	0°37 70	
447	Saklespur .	" 9	12 56 40	75 47 30	9 15	" 0 20	0.3200	
448	Dándigánhálli .	39 IO	12 58 20	76 16 50	9 10	"015	o [.] 3785	
449	Yediyur	,, II	12 58 40	76 51 20	9 15	" 0 15	o [.] 3795	
450	Singánallúr .	18 8	12 8 30	77 13 00	7 50	"o 15	0'38 25	
451	Kávéripur .	" 9	11 54 20	77 45 30	7 45	" 0 25	0.3790	
452	Satyamangalam	,, II	11 30 0	77 14 20	6 15	" 0 25	0.3832	
453	Gundlupet .	18 I3	11 48 20	76 41 20	6 40	" 0 30	0.3810	
454	Sultan's Battery	" 14	11 39 40	76 15 30	6 25	" 0 30	o*3815	
455	Ootacamund .	" 15	11 24 30	76 42 50	5 45	" 0 30	0 .3802	
456	Nilambúr .	" 16	11 16 20	76 13 20	5 25	" 0 30	0'3785	
457	Anamalais .	78 3	10 34 50	76 <u>5</u> 6 0	4 5	" 0 45	0 °3805	
458	Dhárápuram .	<u>∔</u> 8 8	10 43 30	77 31 20	4 30	" 0 50	0°3 84 0	
459	Periyakulam .	» 9	10 7 40	77 33 20	30	" I 10	0 [.] 38 35	
46 0	Top Station (Kanan Devan	" 12	10 6 40	77 13 20	3 50	"O IO	o [.] 3795	
4 61	hills), Munnar	" 12	10 4 10	77 3 20	35	" 0 35	0 .3802	
462	Nyamakad Estate (Kanan Devan hills).	" I2	10 8 10	77 3 10	30	"040	0.381 0	
463	Kuravanath.	" I <u>3</u>	9 38 50	77 12 30	20	"I 0	0.3812	
464	Kanjarapalli .	78 8	933 0	76 46 50	I 25	"I O	o[*]378 0	
465	Alleppi	» 7	9 29 50	76 19 10	o 30	" I O	°*3745	
466	Quilon	₇ 8 2	8 53 30	76 <u>3</u> 6 o	-0 25	E 0 10	0.3280	South end of needle
467	Punalur	18 9	9 1 20	76 55 30	o 45	W Ι ο	o [.] 3795	dipping.
4 68	Tenkási	78 6	8 58 o	77 18 30	o 35	" I O	0°3805	
469	Virudup a tti .	$\frac{10}{78}$ I4	9 35 50	77 57 4 0	o 45	"I 10	0 [.] 38 35	i.
470	Manapád .	7 ⁸ 8 3	8 22 20	78 4 O	—1 o	,, I 5	0.3800	Do,
47 I	Nágarkoil .	" 5	8 11 20	77 26 0	—I 25 ·	"I 5	0.3782	Do.
472	Trivandrum .	,, 4	8 28 50	76 55 30	o 30	"050	0.3800	Do.
473	Cochin	78 5	9 57 50	76 14 0	2 55	" 0 35	0 .38 10	
474	Kodhamangalam	"6	10 3 40	.76 37 40	2 40	"ΙΟ	0'3775	
475	Irinjalakuda	" 4	10 20 20	76 I3 O	4 5	" ° 55	0.3790	
476	Lucknow.	<u>36</u> 2	26 <u>5</u> 0 0	80 55 20	37 45	Е 1 55	0.3210	Visited by
477	Rae-Bareli .	²⁶ 52 3	26 14 0	81 14 40	36 25	,, 1 45	o*3550	two obser- vers.

Abstract showing the approximate magnetic values at stations observed at by No. 26 Party during season, 1903-04—contd.

			Latitude.	Longitude.	Dip.	Declination.	Horizontal Force.	
Serial No.	Name of Station.	Survey No.	0 / 4		• /	• •	C.G.S.	Remarks.
	Amethi	16	26 0 20	97 19 10		E 1 55		
478	6	# <u></u> 5	26 9 20 25 28 0	81 48 40 82 25 50	36 30		0.3540 0.3585	
479 480	Church		25 20 0 25 6 IO	82 52 30	35 15	,, I <u>5</u> 0	0.3505	
400 481	A11 1 1		Ŭ		34 40 15 5	" I 35		
401 482		» 7 6	25 27 30 25 42 0	81 49 20 81 13 10	35 5	"I 40	0°3585 0'3530	
4 02 483				81 5 20	35 45	" I 50	0'3590	Visited by
4°3 484		" 9	25 3 10	83 25 20	34 30	" I 35	0.3290	two obser-
485			25 14 30		35 0	,, I 40	0.3645	
4°5 486	Japla Daltonganj .	1 1 1 1 2	24 32 30	84 0 0 84 4 30	34 5	10 I IO	0.3665	
		" 3	24 2 0	-	32 30	" I 35	1	
487	Palmerganj . Nawáđah	,, I	24 51 40	84 19 50	34 35	" I 25	0.3002	
488			24 52 30	85 32 50	34 10	" I <u>3</u> 0	0.3642	
489	Monghyr.		25 23 10	86 27 50	35 10	" I 40	0.3620	
490	Bhágaipur .		25 14 0	86 57 40	35 5	" I 25	0'3625	
491	Sáhibganj .	••	25 14 50	87 38 20	34 55	" I <u>3</u> 0	0.3620	
492	Pakaur		24 39 50	87 51 40	33 50	,, I 25	0.3640	
493	Azimganj.		24 14 10	88 15 10	33 15	"I 20	0.3682	
494	Sainthia		23 56 50	87 41 20	32 40	" I 15	0'3670	
495	Burdwan		23 15 0	87 52 40	31 15	" I I5	0.3700	
496	Calcutta		22 33 40	88 17 30	29 55	"I 20	0'3725	
497	Ulubaria	» 4	22 28 20		29 40	" I 5	0.3730	
498	Midnapore .		22 25 20		29 50	" I IO	0.3730	
499	Ghátsila		22 35 0		30 10	" I 20	0*3705	
500	Sini • •	" I	22 47 0		30 5	"I 20	o*3725	
501	Purulia .	** 6	23 19 30		31 15	" I 30		
502	Bankura .	1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23 13 30		31 20	, I <u>3</u> 0	0.3110	
503	Garhbeta.	RB I	22 50 40		31 5	" 0 55	0'3710	
504	Rániganj .	## 4	23 35 30		31 40	" I 25	0.3200	
505	Kátrásgarh .	* ** 5	23 48 0		32 15	"I 25	0.3672	
506	Giridfh	" 4	24 10 50		32 50	"I 25	0.3660	
507	Baidyanáth	· · · · 3	24 30 50		33 35	" I 35	0.3622	
5 08	Gidhaur •	,, 2	24 52 20		34 15	" ¹ 35	0.3640	
509		· #8 7	25 28 20		35 40	" I 45	0.3602	
510	Patna .	· " 5	25 35 30		35 30	" I 35	o` 3 595	-
511		,, 6	25 13 40	84 59 50	34 55	" I 3 5	0.3612	
512		• ⁸⁶ / ₈₄ IO	25 33 30		35 30	" 3 35	0.3030	
513	Malipur .	• 👬 4	26 16 10	82 38 50	36 40	" 1 50	0.3260	
514		. "2	26 51 30	81 33 0		n 2 0	0'3520	
515	Gonda .	• 👬 4	27 8 30	81 58 20	38 25	,, 2 0	0°3505	
	l	1	<u> </u>]	1	l	1	

Abstract showing the approximate magnetic values at stations observed at by No. 26 Party during season, 1903-04—contd.

No.	Name of Station.	Survey No.	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force,	Remarks.
Serial No.			0 / 11	0 / 17	• /	• •	C.G.S.	
516	Tulsipur	# 3	27 31 30	82 24 40	38 55	E 2 10	0.3492	
517	Nánp á ra	"2	27 51 40	81 31 10	39 20	"215	o [.] 3485	
518	Katarnian Ghát	" I	28 19 50	81 7 50	40 I 0	"220	0'3460	
519	Basti	1 28	26 49 10	82 46 30	37 5º	" I 55	0 [.] 35 35	
520	Gorakhpur .		2645 0	83 23 20	37 40	"150	0.3240	
521	Uska-Bazár .	38 84 I	27 11 30	83 6 20	3 ⁸ 35	"20	0 .321 0	
522	Bhatni	₩ 3	26 23 0	83 55 40	36 55	, I 50	o [.] 3555	
523	Mau	» 7	25 56 20	83 34 20	36 20	" ¹ 55	0.3220	
5 ² 4	Azamgarh .	"6	26 I <u>5</u> 0	83 11 10	36 15	,, 1 50	0.3262	
5 ² 5	Aunrihar	n 9	25 32 10	83 9 5 0	35 4º	"I 45	0.35 80	
526	Siwán	" 5	26 12 30	84 20 40	36 40	"I 45	0.3262	
527	Chapra	"8	25 48 10	84 43 20	3 6 20	"045	o [.] 3595	
528	Muzaffarpur .	88 4	26 6 30	85 22 30	36 35	"I <u>5</u> 0	0.3590	
529	Pipra	₽ \$ 4	26 29 30	84 59 10	37 20	"215	0 [.] 3565	
530	Bettiah	,, 2	26 48 50	84 31 30	37 45	"20	°3545	
53 1	Bairagnia	30 I	26 43 50	85 16 30	38 0	" 1 55	0.3240	
532	Khanwa Ghát .	<u>\$6</u> 88 I	26 22 10	87 3 20	37 10	"130	o [.] 3570	
533	Nirmali	10 2	26 18 0	86 34 00	3 6 55	" 1 5 5	o•3575	
534	Darbhanga .	" 3	26 6 0	85 54 20	36 50	"I 45	0.3262	
5 35	Gwalior	78 3	26 12 50	78 11 0	36 35	" 2 10	0.3202	
5 36	Mahona	,, 4	25 53 40	77 46 40	35 40	"145	0.3232	
537	Sipri	" 6	25 26 0	77 39 20	35 15	" ^I 35	o 352 0	
538	Bhind	" 2	26 34 10	78 47 50	38 O	" I 15	o .3480	
539	Datia	" 5	25 38 40	78 27 30	35 O	"120	0 .32 22	
540	Basai	» 7	25 8 40	78 23 30	3 5 o	"I 20	0 .323 0	
541	Lalitpur	₹ <u></u> 1	24 40 50	78 24 10	33 50	" I 3 0	0°3600	
541(<i>a</i>)	Lalitpur (a) .	,, т	24 41 10	78 25 50	34 O	"I <u>3</u> 0	0.3590	
542	Pachhár	" 2	24 34 50	77 43 40	33 45	" I 20	o•3565	
543	Dharnáoda .	,, 3	24 35 50	77 5 5 0	34 O	" I 45	o [.] 3545	
544	Bárán	#8 5	25 5 30	76 30 30	34 45	" ^I 35	0 [.] 3530	
5 45	Bína	精 4	24 10 50	78 11 0	32 25	"I 20	0.3Q10	
546	Bhílsa	"6	23 31 10	77 48 50	32 30	" 2 30	0.3260	
547	Bhopal	" 7	23 15 50	77 24 30	31 25	"I 20	0.3602	
548	Hoshangabad .	#8 1	22 45 10	77 43 0	30 15	"I 10	0*3635	
549	Pagdhál	" 4	22 24 50	77 21 10	29 50	"I 15	0.3625	
550	Pipláni	#8 3	22 7 10	76 47 30	30 O	"I4O	0°3585	
551	Khandwa	» 4	21 49 20	76 21 50	29 10	" 0 45	0 .3665	
552	Burhánpur .	» 5	21 20 10	76 11 40	27 20	"I 5	0.3660	
			l	l				

Abstract showing the approximate magnetic values at stations observed at by No. 25 Party during season, 1903-04—contd.

No.	Name of Station.	Survey No.	Latitude.	Longitude.	Dip.	Declination.	Horizontal Force.	Remarks.
Serial No.			• • •	• / •	• /	• •	C. G. S.	
553	Sindkheda .	72 10	21 14 10	74 44 20	26 50	E o 55	0'3670	
554	Nandurbár .	" 9	21 22 30	77 14 40	27 45	" I O	0.3622	
555	Jalgaon	\$8 2	21 1 20	75 33 40	26 45	"050	0.3620	
556	Barwaha	#8 2	22 15 20	76 1 30	29 5	" ^I 5	0°3 640	
557	Indore	», I	22 42 10	75 52 40	30 O	" I IO	0.3622	
55 ⁸	Barnagar	78 6	23 3 50	75 22 30	31 15	"I 25	°'3595	
559	Tarána Road .	» 4	23 15 40	76 3 50	31 10	"I 25	o•3580	
560	Shujáulpur .	» 5	23 23 0	76 43 40	32 5	"I 50	0 [.] 3595	
561	Sohágpur .	\$\$ 3	22 41 30	78 11 20	29 15	"I 15	0.3622	
562	Mohpáni	"2	22 44 40	78 50 20	3 ⁰ 5	"I 15	o.36 50	
563	Narsinghpur .	1 68	2 2 56 50	79 12 30	3 0 35	"I <u>3</u> 0	o•3635	
564	Mirganj	<u>₿4</u> 6	23 9 40	79 4 6 50	31 30	"I 20	0.3280	
56 5	Sleemanábád .	" 5	23 36 30	80 16 20	31 45	" I IO	0'366 5	
566	Sal a iya	" 4	23 51 10	79 58 20		"I <u>3</u> 0	0`3620	No dip ob- served.
5 ⁶ 7	Damoh	» 3	23 50 0	79,26 O	32 30	"I 25	0.3000	
568	Saugor	11 4	2 3 50 50	78 44 20	32 15	"I <u>5</u> 0	0.3612	
569	Dholpur	78 . I	26 41 50	77 54 20	37 35	"I 50	0.3492	
570	Agra Cant.	1 78 9	27 10 40	78 0 20	38 10	"20	0'3470	
571	Shikohabad .	" IO	27 4 30	78 35 30	38 5	"210	0.3482	
572	Achalda	18 3	26 41 50	79 24 50	37 30	,, 2 0	0.3210	
573	Cawnpore .	,, 4	26 27 O	80 21 0	36 55	"20	0.3232	
57 4	Kálpi	» 5	2670	79 45 5º	36 20	,, 1 50	0.3240	
5 75	Púnch .	" 7	25 49 o	79 2 50	35 50	"I 40	o [.] 3535	
576	Mau Ránipur 🛛	" 8	25 15 10	79 9 IO	35 ^o	" I <u>3</u> 5	° [.] 3555	
577	Mahoba	<i>"</i> 9	25 18 10	79 50 40	35 O	"150	o•3545	
578	Atarra	" IO	25 17 20	80 34 10	35 5	" I 40	0.3262	
579	Sutna	88 I	24 34 20	80 50 O	33 55	"I 40	0'3600	
580	Amdara	⁸ 8	24 б 10	80 34 40	32 45	"I 20	0'3620	
581	Málwa	<u>яс</u> б	26 o 50	80 40 0	36 10	"I 45	o.3535	
582	Araul	" I	26 55 0	80 1 40	3 7 5 5	" I <u>5</u> 5	0.3210	
583	Farrukhabad .	<u>\$8</u> 80 11	27 23 10	79 34 40	38 40	" 2 5	o'3475	
5 ⁸ 4	Ganj Dundwára	"8	27 43 30	78 56 20	39 10	"215	0*3460	
585	Kherli	<u>₽8</u> 8	27 12 10	77 1 30	38 10	"210	0'3465	
5 86	Aligarh	» 7	27 53 40	78 4 20	39 [.] 20	"210	0.3420	
5 ⁸ 7	Dhanári .	"б	28 19 50	78 30 20	40 O	"210	o•3435	
588	Aonla	18 6	28 17 50	79 IO IO	4 0 0	" 2 20	o [.] 3440	
589	Míránpur Katra	» 5	28 2 20	79 40 20	39 45	"210	ɔ •3450	
590	Anjhi	"9	27 38 20	79 59 20	39 O	" 2 5	0'3475	
591	Sanoda	,, 12	27 7 0	80 25 10	38 10	" 2 0	o *3495	

.

Abstract showing the approximate magnetic values at stations observed at by No. 25 Party during season, 1903-04—contd.

°,	Name of Station.	Surv		Latitude.	Longitude.	Dip.	Declination.	Horizontal Force,	Remarks.
Serial No.				0 / #	0 / 4	0 /	• /	C. G. S.	
592	Kamalpur .	28 80	10	27 22 30	80 49 40	3 ⁸ 35	E 2 0	0'3490	
593	Lakhimpur .		7	27 56 20	80 46 20	39 30	" 2 10	0'3460	
594	Chandan Chauki	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3	28 32 20	80 46 40	40 30	,, 2 20	0"3450	
5 95	Khutár	"	4	28 12 0	80 15 40	40 O	" 2 10	. 0'34 50	
596	Sháhgarh .	"	2	28 33 30	80 3 10	40 30	,, 2 20	0'3435	
59 7	Richha Road.	"	I	28 43 0	79 29 30	40 45	,, 2 20	o 34 3 0	
598	Káthgodám .	18	I	29 15 20	79 32 50	41 40	,, 2 30	0.3390	
599	Garhmuktesar .	# 8	4	28 46 40	78 4 O	40 55	" 2 30	0'34 10	
6 00	Chola	"	5	28 18 30	77 43 40	40 15	" 2 20	0.3420	
100	Moradabad .	"	3	28 50 0	78 45 30	41 0	" 2 25	o 3415	
6 02	Nagina	78	10	29 25 50	78 25 00	41 55	" 2 3 5	0'3380	

Abstract showing the approximate magnetic values at stations observed at by No. 26 Party during season, 1903-04-concld.

-								
1	Udaipur		24 35 33	73 41 57	33 25	Е 1 30	o [.] 2535	
11	Karáchi		24 49 50	67 2 2	33 40	"10	0 [.] 3470	
Ш	Quetta		30 11 52	67 0 20	42 45	» 2 55	o'3245	
IV	Baháwalpur .		29 23 27	71 40 37	41 40	" 2 50	0.3330	
v	Ráwalpindi .	· · ·	33 35 16	73 3 6	47 55	" 3 40	0.3132	
VI	Bharatpur	6.5.	27 13 31	77. 29 28	38 20	" 2 05	0.3462	
VII	Bangalore	1	12, 59 .35	77 35 58	. 9 25	W o 25	0.3812	
VIII	Dhárwár		15 27 26	74 59 35	15 0	Εοο	0'3765	
IX	Porbandar .		21 38 20	69 37 6	28 20	" I 1 5	0.3010	
x	Fyzabad		26 47 27	82 7 40	37 35	" ^I 55	o:3535	
XI	Sambalpur .		21 28 3	83 58 26	27 35	" 1 05	0.3720	
XII	Waltair		17 42 54	83 19 1	20 55	" 0 30	o•3775	
XIII	Darjeeling .		26 59 49	88 16 39		" I <u>5</u> 0	0.3262	No dip ab-
XIV	Gaya		24 46 30	84 58 54	34 0	"I 25	10°3660	sciveu,
xv	Secunderábád .		17 27 11	78 29 16	19 50	,, 040	0*3790	
XVI	Bhusával .		21 2 46	75 47 18	2 6 35	"I O	0.3682	
XVII	Jubbulpore .		23 8 57	79 56 44	30 40	" I I5	0.3620	

Repeat stations.

NOTE.—The above values of Dip Declination, and Horizontal Force are uncorrected for secular change, diurnal varia-tion, instrumental differences, etc., and are to be considered as preliminary values only. Where blanks occur, values have been already found during previous field seasons, or the observations have not been completed. The Survey numbers refer to the published chart : thus No. 12 3 denotes No. 3 Station in the dotted square, the spheri-cal co-ordinates of whose centre are 26° North Latitude and 76° East Longitude. All Longitudes are referrable to that of Madras Observatory taken at the value 80° 14' 47" East from Greenwich.

DEHRA DÚN OBSERVATORY.

1. After all the care and money spent on the prevention of floods in the General remarks.

underground magnetograph room, it is disappointing to have to record a failure

of the instruments owing to inundation. The rains of the year 1904 were exceptionally heavy and owing presumably to the breakage of an earthenware pipe underground, a considerable volume of water entered the observatory on the 13th August. During the remainder of this month, except for a few days it was impossible to obtain records as the water interfered with the pendulum of the driving clock. On the 2nd September work was resumed and continued without further interruption.

The following additional measures have since been taken to prevent future floods :-

- (1) The earthenware outtake pipe, which is believed to have broken underground, has been blocked altogether where it enters the observatory.
- (2) A low watertight wall has been built across the doorway of the inner room, so as to confine flood water entirely to the outer passage.
- (3) A heavy brass box has been made, within which the pendulum now swings, so that even if water gains access to the inner room, it will in future be possible to keep the instruments going.
- (4) A pump has been purchased for the purpose of keeping the open drainage pit clear of water during periods of heavy rainfall.

It is satisfactory to note that the room was completely dried within two months of the termination of the flood and that the mirrors seem very little the worse for exessive damp. On the 8th November it was found necessary to re-adjust the fixed mirror of the declination magnetograph, but with this exception the instruments were not touched throughout the year.

The tabulated results for the year 1903 are appended. Tables I to III give the actual absolute values obtained throughout the year with the standard instruments used in the south house and in addition the first two tables show, as a test of accuracy, the base line values of the magnetograms deduced from each observation and corrected for temperature in the case of the horizontal force values. Tables V to VIII give the results in declination and horizontal force as tabulated from the curves, whilst table IV gives the disturbances for the year and the selected quiet days utilized in the tabulations.

2. The following table gives the mean magnetic collimation of magnet

No. 17 throughout the year, *i. e.*, the The declination results.

difference of the circle readings when the

magnet is reserved 180° in its stirrups :----

Mon	Months, 1903.			Magnetic	collimation.	Months, 1903.			Magnetic collimation		
January	•	•		- 9	9	July .	• •		—ģ	<i>"</i> 5	
February	•	•		-9	II	August .	•	•	~ -9	8	
March	•	•	•	9	13	September	•		 -9	11	
April	•	•	•	-9	5	October .	•	•	9	4	
May	•	•		-9	6	November	•		8	27	
June	•	•		9	10	December	•	•	8	27	

Magnetic Collimation for each month: Dchra Dún Observatory, Magnet 17.

F 2

The cause of the sudden change which occurred at the end of October is not known, but as there is no simultaneous change in the values of m_o or P, it was in all probability due to the displacement of one of the magnet cells or their contained glasses and not to a displacement of the magnetic axis.

Although all observations were taken with much care, it is noticeable that the individual values deduced for the base line differ from the monthly mean values, by an amount which is considerably larger than might be expected, as it not unfrequently exceeds o'5. Whether these discrepancies indicate actual changes in the base line or, as seems more probable, are due to the observer having failed to remove other magnets to a perfectly safe distance, cannot be said for certain; but this latter explanation seems on the whole the most probable, in view of the fact that a recent determination of the differences between houses in declination is not in accord with the values published in this report.

In the following table the mean monthly declination derived from five selected quiet days is compared for corresponding months in the years 1902 and 1903:—

Month s .	1902.	1903.	1903. Annual REMARKS.		
		0 /	0 /	,	
March	٠	2 43 9 E	2 42·2 E	-1.2	Data prior to March 1902 are not available.
April	•	43.8	4 ² .3	1.2	
May .	•	43 [.] 6	41*3	2.3	•
June	•	43.0	41`2	1.8	
July		43*1	41 ' 0	2.1	
August	•	42.3	41.4	0.0	
September .		42.4	40' 0	2.4	
October	•	42.4	41.0	1.4	
November .	•	42•8	41.6	1'2	
December .	•	42.6	41'7	0'9	
		ſ	Mean	- 1.0	

Mean monthly declination at Dehra Dún.

							e years 1902 and 19		
						_	Needle 1-	Needle 2.	
Mon	ths.						1902.	1903.	
anuary	•	•		•	•		· · · · · · · · · · · · · · · · · · ·	+0.4	
February	•		•	•			_	+ 1.3	
March.	•	•	•	•	•	.	- r.3	+0.1	
April .	•	•	•	•	•		-1.4	+0.3	
May .	•	•	•	•	٠	•	+0.3	+ 0.8	
une .	•	•	•	•	•		-o.3	+ 1.8	
uly .	•	•	•	•	•		-o . 3	+ 1•6	
lugust		•	•	•	•	•	— I.O	+ 0.3	
beptember	•	•	٠	•	•		-0.4	+ 1.7	
October	•	•		•	•		+ 0.1	+0'4	
November	•	•	•	•	•	•	— 0·4	+ 1, 1	
December			•	•			- 0'2	+ 1.8	

3. In the next table the monthly mean differences between needles 1 and 2 of dip circle No. 44 are tabulated for the years 1902 and 1903.

If any useful conclusion can be drawn from these figures it points to the fact that even under observatory conditions needles are erratic in their indications and the values of inclination cannot be trusted nearer than 1' of arc even in the mean for a month.

If, therefore, it is considered necessary to know the absolute value of the inclination and to study its changes with the same degree of exactitude as in the case of the declination and intensity, it would seem necessary to obtain absolute inclinations from some instrument other than a dip circle. In view of the fact that vertical force magnetographs have been ordered for installation at the four base stations under survey control, it has been decided to purchase an earth inductor at once, an instrument which is reputed to give very constant and accurate results. If experience with this class of instruments proves favourable, one or more additional earth inductors will be obtained. Prior to 1st January 1903 all observations of inclination were taken in the old south house, since demolished, and no comparison in dip was made between that building and the existing south house. Both in declination and force, a well marked difference was found by careful observations between the two sites and there is, therefore, good reason for expecting a difference in dip also, so that it is unfortunate that no comparison was made. Consequently any attempt to arrive at the secular change in dip between 1902 and 1903, by comparing the absolute observations taken in those years would carry very little weight and the figures are therefore omitted.

4. It is satisfactory to report that the observations of intensity during 1903 The force observations. show a very marked improvement over those made in the previous year.

Mo	onths	μ		m _e .	P from 22.3 and 30 cms.	P from 30 and 40 cms.	Remarks.
January .		•	•	916.20	7.48	8.10	The values of m _o are computed from the mean P (at 2 [.] 25
February .		•	•	916.27	7:38	8.12	and 30 cms.) for the year.
March .		•	•	916.33	7.47	8.20	
April .		•		916.13	7'35	8·10	
May .		•		915.92	7.32	8.23	
June .		•	•	91 5 .84	7:30	8.13	
July .		•		915.79	7.40	8.36	
August .		•		916 [.] 08	7 ° 45	8.03	
September		•	•	916.36	7·4 6	8.09	
October .		•		915 ^{.8} 7	7.56	8.04	
November		•		915 [.] 63	7 .60	8.17	
December		•		915.76	7.52	7 .70	

Table showing the monthly mean values of constants of the survey standard magnetometer No. 17 during 1903.

These figures indicate that no abnormal change of any magnitude occurred in the magnets during the year and bear witness to the reliability of the observations. The divergence of individual values from the monthly mean base line values may be inspected in table I, and are considered satisfactory. These monthly mean values of the base line may therefore be accepted with some confidence and are tabulated below for convenience of reference.

Monthly mean base line values and tempertures at Dehra Dón Observatory.

	I	•		2	3	4	
h	Months.			Temperature of H. F. instrument, cent.	Scale value of 0.04 inch.	Base line value C.G.S.	Remarks.
				o			
January	•	,	•	24.00	4.03 γ	0.33229	The base line values are referred to a temperature of
February	, [,]	•	•	22.78	4 °04	230	25°c., the temperature co-effi- cient used in the reduction
March	•	•	•	22.23	4.02	223	being $+1^{\circ}c.=-12^{\circ}6\gamma$.
April	•	•	•	22.39	4.02	228	
May	•	•	•	23 .35	4 .04	223	
June	•	•	•	24.80	4 · 0 2	219	
July	•	•	•	26.15	4.02	212	

H. F. Magnetograph No. 1 by Professor W. Watson, F.R.S., 1903.

38

MONTHLY MEAN BASE LINE VALUES AND TEMPERTURES AT DEHRA DÚN Observatory—contd.

I			2	3	4	
Months.			Temperature of H.F. instrument, cent.	Scale value of 0.04 inch.	Base line value C.G.S.	Remarks.
August .	•	•	26.87	4.03	197	Interference noted during
September	•	•	26.99	4.02	. 33211	August. New base line from 9th September when instru- ment was fitted with new
October .	•	•	26.96	4.02	211	mirrors.
November	•	•	26 •70	4 ^{.0} 3	216	
December	•	•	25.98	4.02	216	
Mean		24 .93	4.04	-		

H. F. Magnetograph No. 1 by Professor W. Watson, F.R.S., 1903.

The daily deflection readings indicate that something went wrong with the instrument about the 8th August (*vide* last annual report) and the base line value for that month is not therefore comparable with those preceding it. There is perhaps some evidence of fatigue in the system between May and July, but the amount is small and the series is too short to warrant any such definite conclusion. On the whole the instrument seems to have settled down and is now behaving satisfactorily. After 1st July deflections were made at the nearest of the two distances, and after 1st October they were taken on alternate days instead of daily as hitherto.

-	Months.			1902.	1903.	Annual change.	REMARKS.			
March April	•		•	0 [.] 33469 464	0 [°] 33447 412	-22 γ 22	Data prior to March 1902 not available.			
May	•	•	•	474	443	31				
June	•	:	•	467	443	24				
July	•	•		466	434	32				
August	•	•		458	429	25				
Septembe	er	٠	•	456	424	32				
October	•	•		454	413	41				
Novembe	r	•	•	460	389	71				
December	r	•	•	4 46	398	48				
					Mean⇔	-35 γ				

Table of monthly mean horizontal intensities at Dehra Dún.

TABLE I.

Absolute Magnetic Observations.

I	2	3	4	5	6	7	8	9
Date.	Observer.	Values of m _o .	P from 22.5 and 30 cms.	30 and	Observed values of Horizontal Force.	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
1903.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G . S.	C. G. S.
Jan. 3	K. N. M.	916.68	7.66	8.37	·33452		.33229	
3	,,	.72			54		32	
5	"	•62	7.61	9.16	53		27	
5	"	•73			56		32	
7	33	•62	7.40	7:25	36		34	
7	"	•58		·	34		31	
10	در	.90	7.53	6 [.] 50	76		38	
10	"	•66			68		32	
10	>>	. 94	7.37	7.76	58		29	
10	22	•79			53		29	
11	"	•71	7.71	7.01	61		32	
11	"	•87			67		37	
I I	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•98	7.63	8.04	63		33	
11	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[.] 49			46		17	
14		·85	7.56	7.67	69	33453	29	33229
14		.77			66		31	
17	S. D.	.77	7.37	8.65	62		37	
17		•41			49		21	
17					47		28	
21	K. N. M.	916 .75	7.37	9.16	50		27	
21	>>	•66			46		23	
22	, ,,		7.45	9.30	35		14	
24	, ,,	917.06	7.43	8.84	50		28	
24		•00			48		22	
28		916.45	7.09	8.28	56		32	
28		.52			59		33	
29			7.32	8.28	66		40	
31 31		916.60	7.66	8.37	49)	27	IJ

Digitized by Google

. .

•

ABSOLUTE MAGNETIC OBSERVATIONS.

I		2	3	4	5	6	7		9
Dat	e.	Observer.	Valu es of m _e .	P from 22`5 and 30 cms.	30 and	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
190	3.		C. G. S.	C. G. S .	C . G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Jan.	31	K. N. M	916 [.] 68			· 33452	h .	. 33236)
	31	3 7	'34	7.53	7 [.] 58	3 5	33453	22	33289
	31	"	·41			41	ر ا	27	j
Feb.	4	K. N. M.	916.24	7.20	8.18	·33 4 48		•33226	
	4	, ,,	•45	· • • •		45		23	
	7	,,,	·62	7.69	7.86	59		35	
	7		.52			55		25	
	11	,,,	•66	7.14	9.54	36		39	
	11	,,	•68			37		32	
	12	19	.52	7.37	9.40	49		27	
	12	,,,	.64	•••		53		33	
	14	,,	•60	7.30	8.14	51		30	
	14		•47			46		27	
	18	,,	· •62	7:35	8.46	66	33454	32	3323
	18	,,	•64			6 6		33	
·	18	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•56		•••	63		31	
	21	"	·68	7.26	7.48	77	.	32	
	21	",	•32			60		24	
	31	,,	•37	7:35	8.21	54		22	
	21	,,	•58			62		34	
	2 5	,,,	.71	7'30	8 [.] 60	34		30	
	25	32	•64			32		31	
	28	,,	.77	7.27	8.14	71		33	
	2 8	"	•56			63	1	.30)
Mar.	4	S. D.	916.30	7:53	8.09	*33453	h	.33219	
	4	"	•68			67	.3344	8 27	.3322
	7	19	•49	7.63	7.95	39		21	J

Observations of Horisontal Force at Dehra Dún Observatory.

41

ABSOLUTE MAGNETIC OBSERVATIONS.

	I	2	3	4	5	6	7 .	8	9
Da	ate.	Observer.	Values of m _o .	P from 22.5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value,
19	юз .		C. G. S.	C. G. S	C, G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Mar.	7	S. D.	9 16.49		•••	· 33439	1	'33221	1
	11	,,,	• 66	7.53	8.42	38		26	
	11	"	•66			38		26	
	14	,,	91 5.9 9	7.40	8 [.] 28	30		II	
	14	,,	916-28			41		22	
	14	"	.30			4 2		21	
	15	,,	•••			56		35	
	15	"				46		25	
	18	37	916.45	7 [.] 48	8.32	5 6	33448	31	.33223
	18	ور	•24		•••	48		21	
	21	, (•22	7.37	7.76	62		29	
	21	"	•20	•••		61		25	
	25	,,	•24	7.37	9.16	54		34	
	25	"	•22			53		18	
	28	"	915'99	7.43	8 [.] 60	43		16	
	28	"	916.24			52)	24	
April	I	S. D.	91 6 .26	7.35	8.00	[.] 33468	۱ ۱	·3 3229	/ \
	I	"	•14			63	· ·	\$ I	
	4	,,	.14	7.11	9.81	35		21	
	4	"	·16			36		24	
	4	"	•••	7 [.] 58	7.11	67		30	
	4	"		.14	8.09	63	33456	27	33228
	8	,,	916 [.] 07	7.30	8 [.] 46	14		27	
	8	,,	•30			23		30	
	II	,,	•33	7.26	7.72	48		29	
	11	,,	.18			43		24	
	15	,,	. 07	8.98	4.95	63		35	

۰

Observations of Horizontal Force at Dehra Dún Observatory.

×.

.

.

١

ABSOLUTE MAGNETIC OBSERVATIONS.

Observations of Horizontal Force at Dehra Dún Observatory.

I		2	3	4	5	6	7	8	9
Dat	e.	Observer.	Values of m _o ,	P from 22.5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Forces	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
199	3.		C. G. S.	C. G. S .	C. G. S.	C. G. S.	C. G. S.	C. G. S.	Ç. G. S.
April	15	S . D.	910.01			.33460	1	.33230	
	15	"	915.97	7.17	7.62	62		28	
	18	ډر	916.10	7.53	7.76	76		35	
	18	>>	915.99			70	·33456	22	· ·33228
	22	,,	916.01	7.35	8.88	68	3345	31	
	22	",	.19			73		34	
	29	3)	'3 0	7'45	8.37	73		29	
	29	33	.03			67])	22)
Мау	2 9 9 13 13 16 16 20 20 23 23 23 27))))))))))))))))))))	915.97 916.05 915.90 .82 .82 916.07 915.93 916.14 .03 .01 915.93 916.03 915.86 .78	7.50 7.09 7.30 7.35 6.98 7.22 7.19 7.35	8·23 8·70 7·95 8·70 7·20	33 30	.3345	30 23 22 16 22	.33223
	27	>>	.90			34		24	
•	27		•88	7.61				22	
	30); y)	.71	7.30	8.88	29		15	
	30)))	.74			30	ľ	II	1
			·		<u> </u>				G 2

ABSOLUTE MAGNETIC OBSERVATIONS.

	I	2	3	4	5	6	7	8	9
D	ate.	Observer.	Values of m _o .	P from 22 [.] 5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
īç	903.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C.G.S.	C. G. S.	C. G. S.
June	3	S. D.	915.69	7.22	7.95	•33433		·3323	
	3	25	•78	•••		36		19	
	6	,,	•80	7*43	7 .76	· 48		22	
	6	,,	•76			46		22	
	IO	"	' 95	7.19	8.00	50		28	
	10	,,	.99			52		27	
	13	"	•93		•••	75		29	
	13	,,	·61	7 °50	8.18	63		17	
	13	,,	١٥.			6 ₃		21	
	17	"	·82	7.48	5.89	32	33447	15	33219
	17		•88			34		13	
	17	,,	·84	7.22	8.32	36		13	
	20	"	•74	7.22	8.14	4 4		16	
	20	,,	.74			44		14	
	24	"	·86	7'14	8.79	46		20	
	24	"	·86			46		19	
	27	,,	916 [.] 01	7'32	7.90	46		18	
	27	,,	915.95			43)	12)
July	I	S. D.	916.18	7.06	8 [.] 79	•33446)	.33225	
	I	1)	915.88		•••	35		21	
	4	,,	•69	7.53	8.20	47		وه	
	4	,,	.93			56	•	12	
	8	ופ	' 80	7.45	7.86	53		25	
	8	,,	•63			46	33440	16	*33212
	11	"	•59	6.85	9.07	32		18	
	11	"	·82			40		18	
	15	ور	·82	7.35	7'01	32		12	
	15	,,	* 48			20		00	

•

Observations of Horizontal Force at Dehra Dún Observatory.

Absolute Magnetic Observations.

I	2	3	4	5	6	7	8	. 9
Date.		Values of m _o .	P from	P from 30 and	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
I y03.		C. G. S.	C. G. S.	 C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
July 15	S. D.	915.65			· <u>3</u> 3426		.33207	
16	,,	•88	7.27	8.84	31		17	
18		.71	7.24	8·98	56		II	
18		·80			60		16	
22	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·80	7.48	7.58	47		13	
22))	•86			50	33440	10	33212
25	3)	·80	7.40	8·8 8	53		02	
25	,,,	.74			50		02	
29	33	•82	7.20	9.21	09		198	
29	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	916.01			16)	205])
August 1	S. D.	915.95	7.43	6 [.] 78	·33413	1	.33201	h
I	33	916.18			22		07	
I	"	•20		7.62	21		04	-33210
5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•05	7.35	8.18	396		00	
5	,,	.09			98		194	J
8))	915.93	7.27	8.04	440		91	1
8	33	•82			36		86	
12	"	916.01	7.61	6.27	17		91	
· 12	,,,				28		97	
I 2	,,	•30		7.76	29	33421	85	
15	"	.07	7.53	8.74	18		96	
15	33	•05			17		95	.33197
19	,,	•07	7.61	7.44	22		94	
19	"	•26			29		98	
22		•26	7.56	7.34	393		93	
22	"				87		208	
26	,,	916.30	7.48	8.74	449		03]]
29	,,	915.97	7.40	8.28	25])	195	′

Observations of Horisontal Force at Dehra Dún Observatory.

ABSOLUTE MAGNETIC OBSERVATIONS.

	1						,	
I	2	3	4		6	7	8	9
Date.	Observer.	Values of m _o .	P from 22'5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
1903.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
August 29	S. D.	916.30			'3 343 ⁶	} . ₃₃₄₂₁	· 3 3204	} .33197
29	"	•28			36	}	04	5 33.97
Sept. 2	S. D.	916. 09	7.43	8 . 18	·33436	}	•3 319 2	ו
2	,,	•24			41		99	
5	,,	915.99	7:37	8.65	21		88	* 33197
5))	916 .07		•••	24		91	J
12		.09	7.14	7.62	38		206)
12	>>	•26			44		II	
12	37	•28	7 [.] 66	8.21	4 ^I		ინ	
13	در	•41			46		13	
12	"	•56	7:30	•879	40		14	
12	"	. 01			20		. 05	
13	,,	[.] 54	7.26	7.1 H	13		10	
13	"	'3 9			08		10	
13	,,	. 41	7.20	7'44	• •7	×33429	I 2	
13	"	•14	•••	•••	39 7		05	
. 14	,,	' 45	7.76	6.83	427	-	18	33211
14	"	' 45		•••	27		15	
14	"	*35	•••	7 [.] 95	31		17]
15	"	•35	7.58	7 · 48	37		08	
15	13	•24			33		02	
16	21	•43	7 [.] 69	7.7.2	19		11	
16	37	•47	•••		20		09	
17	,,,	.03	7 ° 45	7.48	44		05	
17	,,	.18		•••	50		10	
18	"	12	7'37	8.37	33		06	
18	v	•22			36)	04	J

Observations of Horizontal Force at Dehra Dán Observatory.

.

Absolute Magnetic Observations.

		2	2			6	7	8	0
I			3	4		0			9
Da	te.	Observer.	Values of m _p .	P from 22'5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
190	93.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Sept.	1 9	S. D.	916-62	7-61	8-84	*3344 ª		.33219	
	19	"	•03			20		196	
	, 19	"	•26			29		206	
	23	33	91 5 99	7.53	7.72	29		12	
	23	••	916'07			32	33429	16	33211
	26	"	•26	7.30	7.76	13		19	
	26	,,	•28		•••	13		17	
	30	n	•09	7'45	8.79	29		19	
	30	"	•22			33)	21]]
Oct.	3	S. D.	916-26	7.74	8.14	·33414	1	.33218	
	3	,,	•45			21		18	
	7	,,	•43	7.82	8.56	27		16	
	7	, ,	•37			25		13	
	10	,,	915.99	7.58	8.37	45		• •4	
	10	رر ا	916.13			· 50		04	
	14		.03	7.45	7.67	359	· ·	05	1 i
	14		·3 3		•••	70		14	
	14	,,	•45	•••		74		14	
	17	1)	916 .33	7.48	7.67	437	\	13	33211
	17	,,	915.93			26		03	
	17	,,,	.99			29		07	
	21	,,	•69	7.53	8.37	36		11	
	21	,,	.55			30		09	
	22	,,	•65	7.45		28		08	
	22	,,	'4 2			20		ാ	
	2 2	,,	•69			30		тġ	
	23	33	·82	7.76	8.00	09		14	
	23	"	·63			- 02	J	14]]

.

Observations of Horisontal Force at Dehra Dún Observatory.

ABSOLUTE MAGNETIC OBSERVATIONS.

		· · · · · · · · · · · · · · · · · · ·			1				
1		2	3	4	5	6	7	8	9
Dat	te.	Observer.	Values of m _o .	P from 22 [.] 5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
190	93.		C. G. S.	C. G. S.	C. G. S.	C.G.S.	C. G. S.	C. G. S.	C. G. S.
Dec.	23	S. D.	915.67	7.69	8.09	.33400)	.33213)
	23	"	•63	•••		398		07	
	24	"	' 95	7.61	8·3 2	431		19	
	24	,,	•80	•••		16		14	
	24	,,	.69	7:37	8 [.] 60	20		14	
	34	23	•63	•••		17		12	
	27	در	.90	7.58	8.00	17		22	
	27	,,	•42			00	33414	08	33211
	27	,,	•57	7'43	7.39	394		05	
	27	,,	.57			94		08	
	28	"	•76	7.92	6.59	417		14	
	28		•67	·		14		12	
	2 8	"	•69	7.20	7.67	13		12	
	28	,,,	.61			10]]	10	1
•									
Nov.	I	S. D.	915.20	7.74	8.37	•••			
	1	"	•••	•••		·33283		.33213	
	4	,,	.71	7 .7 1	8.32	36 6		17	
	4		.25			59		18	
	7	1)	·36	7.28	8.74	400		08	
	7	n	•59			09		14	
	11	"	·61	7.24	8.42	361	.33384	212	33216
	11	• 33	•46			56		07	
	14	».	•76	7.26	7.67	96		22	
	14	رو	•65			93		22	
	18),	· 8 6	7.82	8.28	92		22	
	18	رو ا	•78			. 89		19	
	21	33	•84	7.71	7.48	96	J	22)

Observations of Horisontal Force at Dehra Dún Observatory.

ς.

TABLE I—concld.

Absolute Magnetic Observations.

Ooservalions of norisonial rorce at Denra Dun Ooservatorv	Observations	Horisontal Force at Dehr	a Dún Observatory.
---	---------------------	--------------------------	--------------------

I		2	3	4	5	6	7	8	ŷ
Da	te.	Observer.	Values of m _o .	P from 22.5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
190	o 3 .		C. G. S.	C. G. S.	C. G. S.	. C. G. S .	C. G. S.	C. G. S.	C. G. S.
Nov.	21	S. D.	91 5.59			•3387	j	.33216	h
	25	ور	•65	7.63	8.04	407		13	
	25	,,	•65			07	33384	17	33216
	28	,,	.61	7.45	8.98	14		¹ 3	
	28	99	.44			08]	وه	J
Dec.	2	S. D.	•57	7.66	7.48	377		10	\ ·
	5	,,	916.02	7.32	7.62	400		16	
	5	. ,,	915.80			390		10	
	9	""	· 7 6	7.53	7.34	410		27	
	9		.29			03		23	
	II	, ,			8.04	06		23	
	12	,,	.71	7.56	7.76	07		22	
	12	,,,	•44			397		12	
	12	>>	•69			406		21	
	16	,,	.74	7.43	7.34	392		20	
	16	,,	.67			90	·33396	20	.33216
	19	,,	•74	7.63	8.28	415		23	
	19	,,	•57		···· ·	09		17	
	23	, ,,	•69			396	·	13	
	23	>>	•71	7.63	7.62	· 97		14	
	23	,,	•57	•••		92		10	
	26	, ,,	•67	7.53	7.30	422		10	
	26	· ,,	.61			20		12	
	30	"	916 .30	7.40	8.18	376		15	
	30	"	•14			374		18	
	31	"	01			367		11	
	31	"	• • • • • • • • • • • • • • • • • • • •			370	J	14	J
				•			1	•	н

н

TABLE II.

ABSOLUTE MAGNETIC ORSERVATIONS.

I	I		3			4		5	6	7
Date.		Observer.	Magnetic matic	: Colli- m.	Observ natio	ed Decli- n, Bast.	mean ed	nthly observ- Decli- n, East.	Base Line values.	Monthly mean Base Line values
1903			,		• •	,	•	,	,	
January	6	K. N. M .	-9	13	2	42.3	h		97.3);
	9)1	9	5	2	42.4			97.1	
	13	n	9	8	2	41.8			96 ·9	
	16	,,	9	9	2	43'1			96 ·5	
	20	"	9	13	2	43.1			96.3	
	23	3)	9	13	2	44' 0	2	42.7	96•2	96.5
	27	"	9	6	2	4 2 •9			95.9	
	27	"	9	7	2	42 [.] 6			95.9	
	30	,,	9	16	2	42.8			96 [.] 4	
	30	,,	9	9	2	42 [.] 6			96·4	
	30	"	9	5	2	42.3	J		96 . 3	J
February	3	K. N. M.	-9	16	2	42.4	j		96.7	h
	3	23	9	11	2	42.2			96.96	
	6	"	9	13	2	43.0			96.2	1
	10	"	9	13	2	43.4			95 .5]
	11	"	9	I	2	41.3			95 ^{.8}	
	11	"		16	2	41. 4			95.8	
	13	,,	9	14	2	42' 9	2	42' 3	96•2	95 95
	17	33	9	14	2	4 2°6			95.2	
	20	,,	9	16	2	42.9			96 .0	
	24	"	9	6	2	4 0' 9			95 ° 6	
	24		9	3	2	40 [.] 8			95 .2	1
	27	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	11	2	42.2	J .		95 .7	μ
March	3	К. N. M.	-9	9	2	41.3	h		9 6·2	h
	10	S. D.	9	37	2	41.3		40.4	95.2	
	10	33	Ş	29	2	41.8	2	42.4	95.2	95'5
	13	,,	9	14	2	4 3 [.] 7	J		9 5 .6	J

.

Observations of Declination at Dehra Dan Observatory.

.

ABSOLUTE MAGNETIC OBSERVATIONS.

I		2	3			4		5	6	7
Date.		Observer.	Magnetic Colli- mation.		Observed Decli- nation, East.		mean ed D	observ- Decli- o, East.	Base Line values.	Monthly mean Base Line values.
1903.					0	,	•	,	,	,
March	17	S . D.	9	18	2	43.8	h		9 5 ^{.8}	h
	20	33	9	3	2	4 0'3			95.9	
	20	• ,,	9	7	2	40'2			95 [.] 9	
	24	"	9	9	2	41.0	2	42'4	9 4 ^{.8}	95 .2
	27	>>	9	6	2	44'9			<u>9</u> 5·8	
	27	39	9	8	2	45'4			95.5	
	31	"	9	I	2	43'1	J		95.1	J
April	3	S. D.	-8	57	2	43.4			95.7	h
	3	33	9	13	2	42.4	l		95.5	
	3 7		9	5	2	42*2			94'9	
	14		9	3	2	41'0			94.3	
	17	,,,	9	I	2	40.2		41.1	95.3	} 95 [.] 2
	21	,))	8	55	2	41.3			95'3	
	21	,,	9	8	2	41.0	1		95 [.] 3	
	28		9	13	2	37 °3]]		95.2	J
		S. D.		8					95.6	
May	I		-9	9	2	42°5 39°8			95.7	
	5 8	1.	9	9 12	2	3 9.1			94'3	
	12		9	.2	2	39 · 40·9			95.0	
	15		8	7 57	2	4°9 41°б			94'4	
	•5		9	37 7	2	41'2	2	40.3	94'3	94 '9
	-5 19	1	9	, 5	2	39 •4			94.8	
	- y 22		9	5	2	38 · 9			94'9	
	 26		9	6	8	40'I			95.7	
	29		9	-		39.7			95.0	

Observations of Declination at Dehra Dún Observatory.

H 2

ABSOLUTE MAGNETIC OBSERVATIONS.

. 1		2	3			4		5	6	7	
Date.		Observer.	Magnetic Colli- mation.		Observ natio	Observed Decli- nation, East.		onthly observ- Decli- n, East.	Base Line values.	Monthly mean Base Line values.	
1903.			,	Ħ	0	,	0	'	,	,	
June	2	S. D.	-9	13	2	41•4	Ŋ		95.1	h	
	5	"	9	21	2	39.5			94'9		
	9	ور	9	19	2	39.0			9 ^{5.1}		
	12	,,	9	2	2	38.6			95 [.] 6		
	16	,,	9	9	2	38.7	2	39 [.] 4,	95 [.] 6	≻ 95 [.] 1	
	19	(1	9	7	2	39'3			95'3		
	23	"	9	4	2	4 0'0			94.4		
	26	"	9	17	2	38.8			9 5 .0		
	30	"	9	I	2	39.7	J		94.7	J	
July	3	S. D .	-9	13	2	39 [.] 9	า		95° I	ן ר	
	7	3 1	9	36	2	39.1			95.5		
	10		8	52	2	37 .7			93 [.] 7		
	10	ŋ	8	52	2	37 [.] 1			93.6		
	14	"	9	2	2	3 ^{8.} 0			95 [.] 0		
	17	,,		53	. 2	41'1	2	39.4	94 '3	} 94'5	
	17	,,	9	I	2	40 [.] 8			94.2		
	24	1 3	9	16	2	3 9 · 8			9 3.9		
	24	"	9	3	2	40 [.] 0			94.0		
	28	"	9	9	2	39 '4			95' 4		
	31	"	9	I	2	40'0	J		94.4	J	
August	4	S. D.	-9	16	2	39.1	٦ ١		95 [.] 5	h	
	7	3 3	9	4	2	38.8			95'9		
	II	33	9	10	2	37.6			94 · 9		
	14))	9	4	2	37.7	2	3 ^{8.} 7	94 [.] 9	95.2	
	18	>>	9	0	2	39 [.] 4			95 .6		
	21	33	9	10	2	38 [.] 6			94 [.] 9		
	25	19	9	IO	2	39 [.] 7			94 [.] 8		

Observations of Declination at Dehra Dún Observatory.

Absolute Magnetic Observations.

I		2	3			4		5	б	7
Date.		Observer.	Magnetic matic	c Colli- on.	Observ natio	red Decli- on, East.	mean ed I	nthly observ- Decli- n, East.	Base Line values.	Monthly mean Base Line values.
1903.				,	0	,	٥	,	,	,
September	I	S. D.	-9	11	2	38.9	h		94.7	h
	4	"	9	' 3	2	37.8			94.7	94.6
	8	33	9	19	2	37'4			94 .4	J
	11	"	9	10	2	39.3			95 . 9	1
	15))	9	10	2	39.4	2	38.3	96.2	
	22	"	. 9	17	2	37.8			96 [.] 1	
	22	"	9	12	2	3 ^{8.} 5			97.4	
	25	"	9	6	2	36 ·6			9 6 [.] 1	
	2 9	33	9	10	2	3 ^{8.} 4	}		9 <u>6</u> .1	J
October	2	S. D.	-8	57	2	37.8	h		96.2	h
	6	"	9	8	2	-41.3			97 .6	
	9	"	9	2	2	39 [.] 6			97 [.] 7	
•	13	,,	8	58	2	40 [.] 7			96 . 0	
	16	"	9	3	2	40 ' 9			96 [.] 5	
	20	"	8	58	2	39'9			56. 4	
	21	"	9	7	2	39 [.] 5	2	40 [.]	9 6 ·6	97 .0
	23	>>	9	2	2	41.3			97'4	
	23	33	9	9	2	40'9			97.2	
	27	"	9	7	2	40'2			97'4	
	27	"	9	4	2	39'9			97 '2	
	27	U,	9	6	2	40'1			97`4	
	30	33	9	5	2	41.1	Ĵ		97 * 3	J
November	3	S. D.	-8	2 9	2	41.3)		97 *4)
	3	23	8	12	2	42.4			97 * 5	
	4	,,	8	28	2	40 [.] б	2	41 ° 6	97.5	97`3
	4	,,	. 8	25	2	40 [.] 8			97'3	
	5))	8	33	2	40.9	ŀ		97.1	J

Observations of Declination at Dehra Dún Observatory.

TABLE II-concid.

ABSOLUTE MAGNETIC OBSERVATIONS.

I		2	3			4	5	6	7	
Date.	,	Observer.	Magnetic Colli- mation.		Observed Decli- nation, East.		Monthly mean observ- ed Decli- nation, East.	Base Line values.	Monthly mean Base Line values.	
1903.			,		•	,	• •	,	,	
November	5	S. D.	8	30	2	40•8	h	96.9		
	5	33	8	27	2	4 0°9		97.0		
	5	33	8	25	2	41 .0		97.1		
	5	33	8	24	2	40 [.] 9		96 · 9		
	6	,,,	8	32	2	41.9		97.0		
	6	"	8	30	2	42.3		9 7 .0		
	6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8	30	2	4 2 [.] 6		97.2	97'3	
	6	,,	8	29	2	42.5	2 41.6	97.1		
	6	"	8	30	2	4 ² .7		97.2		
	10		8	25	2	40.9		97 [.] 6		
	13	"	8	21	2	40.2		[.] 97 [.] б		
	17	در	8	28	2	42.2		97 [.] 9		
	20	,,	8	28	2	41.2		97 [.] 6		
	24))	8	25	2	42.3		97 [.] 6		
	27	33	8	27	2	41.8	J	97'9	J	
December	I	S . D.	-8	24	2	41.4		97.8	h	
	4	,,	8	23	2	42.4		97.6		
	8	21	8	30	2	41'I		97.4		
	8		8	27	2	41.4		97.5		
	11	, " , "	8	29	2	40.2		97.4		
	15	, " , "	8	24	2	41'4	2 41.5	97°6	97.6	
	18	, ,,	8	29	2	41.8		97.3		
	22		8	28	2	42'1		97.6		
	25	, '' , ''	8	30	2	42.0		97.7		
	-5 29	,,,	8	23	2	41 [.] б		97.6	IJ	
	2	, <i>"</i>		v		•	-			

•

Observations of Declination at Dehra Dán Observatory.

TABLE III.

ABSOLUTE MAGNETIC OBSERVATIONS: YEAR 1903.

Date.		Dehra L. M. ti ob serv a (o to 24	ime of ation	Observer.	Needle No.	Observod Dip.	Monthly mean for each needle.	Monthly mean.
1903.	·····	h.	m.			0 /		
Janu ary	I	- 15	55.0	K. N. M.	I	43 10'1		
	I	15	55.0	3 7	2	10.Q		
	5	16	3.0	"	г	9.8		
	5	16	3.0	33	2	11.3		
	8	12	37.0	a)	I	9'5		
	8	12	37'0	"	2	9'3	No. 1 43° 11''2	
	12	14	2 3' 0	32	I	11.3	43 11 2	
	12	14	22'0	"	2	11.9		
	12	15	4'0	33	2	12'3		
	13	15	53.0	")	I	12'4	No. 2 43° 10'-8	
	15	15	53.0	3)	I	.12'0	43° 10'•8	43° 11''0
	15	15	53'0	,,	2	9.9		45
	16	12	54.0	"	2	9*2		
	19	13	41'0	"	I	12.2		
	19	13	41.0	,,,	2	8.0		
,	19	14	48 ' 0	IJ	2	13'9		
	22	12	21'0	3 3	I	11'1		
	22	12	31.0	,,	2	1 3. 1		
	26	14	41.0))	I	11.8		
	26	14	4 1'0	>>	2	11,1		
	29	13	59 '0	,,	I	11.4		•
	29	13	59.0	27	2	10°5	;))
February	2	13	52' 0	K. N. M.	I	43 12.2		\
	2	13	5.20)	2	11.3)
	5	14	2.0		I	13.1		
	5	14	2.0	"	2	9.7		43° 12''
	5	14	49'0	"	2	12.3		
	9	13	24.0	»	I	12.0)

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

TABLE III—contd.

ABSOLUTE MAGNETIC OBSERVATIONS: YEAR 1903.

Date.		Dehra L. M. 1 observ (o to 24	ation	Observer.	Needle No.	Observed Dip.	Monthly mean for each needle.	Monthly mean.
1903		h,	m.			,		
February	9	13	24.0	к. n. m.	2	43 11.1	No. 1) 43° 12''7	۱
	I 2	14	54 [.] 0	3)	I	14.1		
	12	14	54.0))	2	13.1		
	16	12	26 .0	,,	1	10'2	No. 2	
	16	12	26 .0	"	2	8.9	43° 11'.4	
	16	13	37.0	"	2	12.6		
	19	12	45°0	2)	I	1 3 .0		43° 12' 0
	19	12	45.0	,1	2	11.2		
	23	15	9.0	37 -	г	13.2		
	23	15	9. 0	"	2	11.0		
	26	13	51.0	,,	I	12.3		
·	26	13	51.0	,,	2	11.2)
March	2	13	0	K. N. M.	I	43 12 [.] 2		
	2	13	o	,,	2	10.3		
	5	11	50 .0	Shri Dhar	I	10 [.] 8	No. 1	
	5	11	50 ' 0	21	2	10 [.] 6	43° 11'.0	
	9	11	51.0	,,	I	14.3		
	9	II	510	"	2	13 .4		
	12	8	54'0	73	I	11.1		
	12	. 8	54'0	"	2	9 .0		-
,	16	12	8 [.] 0	1,	I	11'4		43° 10'•7
,	16	12	8 [.] 0	32	2	10.8		
	19	II	53.0	"	I	9 .9		
	19	II	53 [.] 0	,,	2	8 ·8		
	20	12	22.0	""	I	10.3		
	20	12	22.0	")	2	8.3		
	23	12	8 [,] o	"	I	10.7	No. 2	
	23	12	8·0	33	2	1 2 .0	43° 10'.3	

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

Absolute Magnetic Observations: year 1903.

Date.		Dehra L. M. t observ (o to 24	ime of atio n	Observer.	Needle No.	Obse Di	erved ip.	Monthly mean for each needle.	Monthly mean.
190	3.	b.	m.			0	,		
March	26	11	36 [.] 0	Shri Dhar	I	43	10.1)
	2 6	11	3 6.0	33	2		9.3		43° 10 '7
	30	II	33.0	"	I		9.7		43 10 7
	30	II	3 3.0	,,	2		10.1)
April	2	11	22' 0	,,	I	43	10.2		١
	2	II	2 2'0	",	2		11.8		}
	6	11	15.0	,,	I		13.8		1
	6	11	15.0	,,	2		13.2	No. 1 43° 12''4	
	9	12	33.0	"	1		14.0	7 3 ~ 4	
	9	12	33.0	53	2		14'2		
	13	11	45' 0	**	I		8.8	、	
	13	11	45 [.] 0	,,,	2	•	11.0		
	13	13	2.0	ور	I		1 1 • 1		
	13	13	2.0	"	2		10'2		
	16	12	18.0	,,	I		1 2°4		
	16	12	18.0	"	2		10. 3		
	20	12	18.0	,,	I	•	14'1	$ \rangle$	43° 12.
	20	12	18.0	"	2		14'3		
	23	13	8.0	H. A. D. F.	г		13.0		
	27	12	40 '0	Shri Dhar	I		12.9	No. 2 43° 12'1	
	27	12	4 0 '0	,,	2		13 .4		
	28	14	54.0	"	I		15.1		
	28	• 14	5 4°0	,,	2		15.9		
	29	13	49'0))	I		10.1		
	29	13	4 9'0	""	2		10.2		
	30	14	4 3°0	>>	I		12.9		
	30	14	43'0	33	2		8.1		
	30	15	54.0	"	I		11.0		
	30	15	54.0		2		10.8	/	/

•

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

Digitized by Google

I

. . .

TABLE III-contd.

ABSOLUTE MAGNETIC OBSERVATIONS : YEAR 1903.

	Date.		L. M. obser	ra Dún time of vation 4 hours).	Observer.	Needle No.	Observed Dip.	Monthly mean for each. needle.	Monthly mean.
May	1903.	2	h. 13		Shri Dhar	I	° , 43 11.7		
		2	13	5 6∙o	,,	2	10.8		
		4	11	45.0	"	r	141		
		4	11	45'0	21	2	10.3	No. 1	
		5	12	21.0	,,	I	13.2	43° 12''3	
		5	12	\$ 1•0	22	2	12.0		
		•7	12	6 ∙o	,,	I	11.9		
		7	12	6·0	ر ر	2	12.8		
		8	12	3 6 [.] 0))	I	10.8		
		8	12	36 [.] 0	"	2	10.9		
		9	13	54.0	"	I	12.3		
		9	13	54.0	"	2	9.8		
		11	II	47.0	33	I	9'4		
		11	11	47'0	ىر	2	10.2	}	43° 11''g
		12	13	13.0	"	I	18.8		
		12	13	13.0	"	2	21.2		
		14	I 2	4 8·0))	I	11.2		
		14	I 2	4 8·o	3)	2	9'7	No. 2	
		18	12	1.0	,,	I	10.1	43° 11'·5	
		18	12	1.0	"	2	10.4		
		21	11	44'0	"	2	9.9		
		21	II	44'0	"	I	10.2		
		25	13	50.0	"	I	11.8		
		25	13	50.0	"	2	9.9		
		28	15	18.0	20	I	12.0		
		28	15	18.0	17	2	11.0	/	
une		4	14	30'0	"	I	1 3.7	No. 1 43° 14''1	
		4	14	30.0	9 7	2	11.0	> }	43° 13′ 2
	1		14	23.0	,,	I	14.3	No. 2 43° 12'·3	

Observations of Dip at Dehra Dan Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

ABSOLUTE MAGNETIC OBSERVATIONS ; YEAR 1903.

	Date.		Dún ime of ation hours.)	Observer.	Needle No.	Observed Dip,	Mosthly mean for each socdle.	Monthly mean.
	1903.	h.	m.			0 1		
June	11	14	23'0 '	Shri Dhar	3	12.7	No. 1 43° 14''1	1
·	15	14	49'0	93	I -	13.2	43° 14' 1	
	15	14	4 9'0	"	2	11.0		
	18	12	45.0	ور	I	13.6		
	18	12	45.0	11	2	11.7	4	
	22	14	45'0	.,,	I	14.0	1/	43° 13'.
	22	14	45.0	,,,	2	1 1 .Q		
	. 25	15	11 .0	22	I	15.9	No, 2 43° 12''3	
	25	15	11.0	2)	2	14.1	4.5 ** 5	
	29	14	1.0	2)	I	13.6		
	29	14	1.0	33	2	12 [.] 6		/
July	2	12	1 0.0	Shri Dhar	I	4 3 13.1		
-	2	12	19.0	""	2	10.8		
	6	11	4 9 .0	32	I	14.8		
	. 6	11	4 9'o	"	2	'≇3'7		
	9	15	6.0	,,,	I	14.9		
	9	15	6.0	,,,	2	12.4		
	13	14	18.0	,,	I	13 .Q	No. 1 43° 14''2	
	13	14	18 .0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	12.8	43 14 2	
	16	12	3 6.0	,,	I	13.4	}	43° 13
	16	12	3 6.0	,,	2	I 2 ·7		
	20	14	19.0	,,	I	14.1		
	20	14	19.0	,,	2	12.8	No. 2 43° 12'-6	
	23	12	.40 .0	,,	I	I 3.2	43° 1,2′-6	
	23	12	4 0'0	.,,	2	122		
•	27	14	5.0	:)	T	15.6		
	27	1.4	<u>5</u> •0	,	2	12.7		
	27	14	14 0	, ,,,	I	14.3	Y	ľ

.

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and a by Dover.

I 2

.

TABLE III-contd.

Absolute Magnetic Observations: year 1903.

Date.		Dehra L. M. t observ (o to 24	ime of ation	Observer.	N ce dle No.	Observed Dip.	Monthly mean for each needle.	Monthly mean.
1903. July	30	h. 13	т. 36•о	Shri Dhar	I	°, 43 14 [.] 6	No, 1	{43° 13'.4
	30	13	36.0	"	2	13.0	$\begin{cases} 43 & 14^{12} \\ No. 2 \\ 43^{\circ} & 12^{\circ} 6 \end{cases}$	5 ⁴³ ¹³ ⁴
August	3	15	8.0	,,	2	15.4	43 12 0)
	6	13	4 8 .0	در	I	13.1		
	6	13	48.0	,,	2	13.2	No. 1 43° 14'•6	
	IO	14	22'0	"	1	12.3	43° 14'.6	
	10	14	22'0	33	2	15.4		
	II	11	1.0	27	I	12.9		
	11	11	1.0	"	2	10.1		
	11	11	1.0		2	12.9		
	13	11	21'0	"	I	15.6		
	13	11	21.0	33	2	15.4		
	17	13	50 .0		Т	15.0	$ \rangle$	
	17	13	50.0	"	2	13.0	No. 2	43° 14' 5
	20	II	1.0	11	I	15.7	43° 14'3	
	20	11	1.0	• ,,	2	13.8		
	24	13	37.0	>>	I	16.3		
	24	13	3 7:0	ور	2	13.2		
	24	13	55.0	ور	2	14'2		
	27	11	9 .0	"	I	15.1		
	27	11	6. 0	,,,	2	14.9		
	31	14	21.0	23	I	15.7		
	31	14	21.0	"	2	13.7)	J
September	3	17	13.0	"	T	17.5	No. 1	
	3	17	13.0	"	2	14.1	43° 15.'9	
	4	14	45 [.] 0	,,	I	15.2		
	4	14	45'0	>>	2	14.0	1	43° 15'.0
	6	14	45' 0		I	14.9	No. 2	
	6	14	4 5° 0	y 1	2	12.5	43° 14''2	/

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

TABLE III-contd.

Absolute Magnetic Observations: year 1903.

Date.		L. M. ti observ	Dehra Dún L. M. time of observation o to 24 hours).	Observer.	Needle No.	Observed Dip.	Monthly mean for each needle.	Monthly mean.	
1903. September	7	h. 14	m. 57 ^{.0}	S. D.	I	° ' 43 15'7	No. 1 43° 15''9		
	7	14	5 7 ^{.0}	,,	2	14.4	43 15 9		
	10	13	47 ' 0	,,	I	15.0			
	10	13	47 .0	در	2	13.7			
	14	15	0	"	I	17.8			
	14	15	0	11	2	14.1			
	15	11	20'0	,,	I	15.9			
	15	11	20.0	در	2	15°5		43° 15'	
	17	14	40 '0))	I	13.7		43 15	
	17	14	40'0	"	2	15.1			
	21	13	30.0	,,	I	10.1	No. 2 43° 14''2		
	21	13	30.0	,,	2	13.6	43° 14′·2		
	24	12	11'0	"	I	15.2	-		
	24	12	11'0	,,	2	15.1			
	28	14	54.0	ور	I	16.2			
	28	14	54.0	39	2	14.3		1	
October	I	10	58 [.] 0	"	I	14.3)	
	1	10	58 ' 0	12	2	13.1			
	5	13	34 ° 0	,,	I	14.3			
	5	13	34 [.] 0)3	2	15. 7	No. 1 43° 16'·0		
	8	13	21'0	,,	I	15.3	43 100		
	8	13	21.0	,,	2	17.2			
	I 2	10	49' 0	,,,	I	16. 7	$ \rangle$		
	12	10	49 .0	"	2	17.5		43° 15′	
	15	10	4 2 .0	9)	I	15° 7			
	15	10	42 ° 0	,,	2	10.1	No. 2 43° 15' [.] 6		
	19	13	24 .0	"	I	16.2	43 15 0		
	19	13	24'0))	2	14.0			
	22	11	49 '0	,,	I	16.0	J		

.

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

TABLE III-contd.

ABSOLUTE MAGNETIC OBSERVATIONS: YEAR 1903.

Date.		Dehra I M. ti observ (o to 24	me of ation	Observer.	Needle No.	Observed Dip.	Monthly mean for each needle.	Monthly mean.
1903. October	22	h. 11	m, 49'0	S . D.	2	° ' 43 15.4)
	22	13	12.0	3 5	1	166	No. I	
	22	13	12.0	,,	2	14.6	43° 16'·o	
	26	12	4'0	39	I	15.8		
	26	12	40	,,	2	16·3		
	26	13	23.0	3 3	1	1 8 . 3	}	43° 15'
	2 6	13	23.0	. ,,	2	1 7 .6	No. 2 43° 15'.6	
	29	12	2.0	3 3	I	14.0	43 15 0	
	29	12	2.0	27	2	15.5		
	29	13	11.0	39	I	15.9		
	29	13	11.0	39	2	15.3	/)
November	2	13	4 4'0	23	I	22.3		,
	2	13	44.0	")	2	18 .6		
	2	14	4 1.0	>>	I	23.4		
	2	14	4 1.0	27	2	21.8		
	5	7	5 5.0	>>	I	20.5	No. 1	
	5	7	55.0	"	2	19.9	43° 19''o	
	7	14	4 0 '0	37	I	17.6		
	7	14	4 0 .0	دو	2	17.5		
	8	8	1.0	37	I	19.4		43° 18.'
	8	8	I. O	"	2	18.7		43 10 5
	9	16	38 .0	33	I	17.5		
	9	16	38.0 .	3 •	2	178		
	12	13	36. 0 ·	39	I	16.0	No. 2 43° 17''9	
	12	13	36.0	<i>)</i>)	. 2	1 6 .0	43 17 9	
	16	13	28 .0	,,	I	17.0		
	16	13	28 .0	19	2	17.2		
	19	12	28 [.] 0	"	I	19.5		
	19	12	28 .0	,,	2	17'0	/	1

Observations of Dip at Dehra Dán Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 1 and 2 by Dover.

NO. 26 PARTY (MAGNETIC).

TABLE III-concld.

ABSOLUTE MAGNETIC OBSERVATIONS: YEAR 1903.

Date		Dehra L. M. ti observa (o to 24	i me of ation	Observer.	Needle No.	Observed Dip.	Monthly mean for each needle.	Monthly mean.
1903. November	23	h. 12	m. 58°0	S. D.	I	° ' 43 17 [.] 8	No. 1	
	23	12	58·0	"	2	17.3	4 3[°] 19'.0	
	26	12	20.0	21	I	18.2	l	43° 18'.
	26	12	20' υ	>>	2	16 [.] 9		43 18 9
	30	13	29 .0	3 9	I	18.4	No. 2 43° 17''9	
	30	13	2 9'0	"	2	1.27	43 17 9	/
December	3	13	31.0	9)	2	17.1		
	7	12	13.0	22	I	16.7		
	7	12	13.0	33	2	15.0		
	10	15	10.0	22	I	17.1		
	10	15	10.0	"	2	14.2	No. 1 43° 19'*0	
	14	13	28 [.] 0	22	I	20.4	43 19 0	
	14	13	2 8 .0	22	2	18.5		
	17	13	50.0	"	I	19.5		
、	17	13	5 0 .0	33	2	17.3		
	21	13	27.0	,,	I	19.9		
	21	13	27 .9	27	2	18.3		
	24	12	31.0	,,	I	16.3	}	43° 18'
	24	12	31.0	17	2	15.2	No. 2 43° 17''1	
	27	II	27.0	>>	I	17.9	43 17 1	
	27	11	27.0	>>	2	15.9		
	28	13	49 .o	25	I	18.2		
	28	13	49.0	"	2	16.3		
	28	12	29.0	N. R. M.	I	18.4		
	28	12	29.0	,,,	2	15.8		
	31	12	6 .0	39	I	22.9		
	31	I 2	6.0	"	2	21.2		
	31	13	26 [.] 0	S.D.	I	21.0	ł	
	31	13	26 .0	37	2	19.3)	1

Observations of Dip at Dehra Dún Observatory taken with Barrow's Dip Circle No. 44 and needles Nos. 3 and 2 by Dover.

TABLE IV.

Dates of magnetic disturbances at Dehra Dún in 1903.

Latitude of observatory= 30° -19'-29." Longitude of ,, = 78° -5'-42".

Date. Jan. Feb. March. April. May. Jane. July. Angent. Sept. Oct. Nor. 1 . . S C S C S S C VG 3 . . S C C C S M S S S M 3 . . S C C C C C C C C C C C C C C C C S <td< th=""><th></th><th></th><th></th><th></th><th></th><th>H6.</th><th>Mont</th><th>•</th><th></th><th></th><th></th><th></th><th></th><th>os.</th><th>19</th><th></th></td<>						H6.	Mont	•						o s.	19	
1 .	Dec.	Nov.	Oct.	Sept.	Angust.	July.	June.		April,	March.	Feb.	Jan.		te.	Da	
3 . . S C C C C S C C C S S C C S S S S C S S S S S C S	S	V G	с	S	С	S	S	С	С	S	С	S		•	•	I
4 . . S C (C) S S S (C) S S S S 5 . . S<	s	м	s	S	s	S	м	S	(C)	s	(C)	S	•	•	•	2
5 . . S S S S S C S C S S S S S S S S C S S S S S S S S C S S S C S S S S C S S S S S C C S S S S C C S	(C)	S	(C)	(C)	(C)	С	S	(C)	С	с	С	S		•	•	3
6 . . C (C) S G S C S C S S C S S S C S S S C S S S C C C C S S S C C S	м	s	S		s	(C)	S	S	S	(C)	С	S	•	•	-	4
7 C S S S S . . S S .	s	s	s	•••	s	С	S	М	s	s	s	S	•	•	•	5
8 . . C M S S C C S S S 9 . . S S S S S S C S S S S C S	s	s	S	s	С	S	С	S	G	s	(C)	С	•	•	•	6
9 . . S S S C S C S (C) S 10 . . S C S C S S C S S C S S C S <td>s</td> <td>(C)</td> <td>S</td> <td>(C)</td> <td>(C)</td> <td>(C)</td> <td>(C)</td> <td>S</td> <td>S</td> <td>s</td> <td>С</td> <td>(C)</td> <td>•</td> <td>•</td> <td>•</td> <td>7</td>	s	(C)	S	(C)	(C)	(C)	(C)	S	S	s	С	(C)	•	•	•	7
10 . S C S C (C) S S S S 11 . . . S S (C) C S S M S S S 12 . . . (C) S S C (C) C S M M S S S 13 . . C S M (C) S (C) S S S S S G S 14 . . S C S C S	s	s	s	s	S	С	С	s		s	м	С	•	•	•	8
11 . . S S (C) C S S M S S S 12 . . . (C) S S C (C) C C S M M S 13 . . C S M (C) S (C) S S S G S 14 . . . S C S C S S S S S G S 15 . . . C S C S S S S S (C) C C C C C C C C S S C C C C C C C C C C C C C C C C C <td>С</td> <td>s</td> <td>(C)</td> <td></td> <td>S</td> <td>с</td> <td>S</td> <td>s</td> <td></td> <td>s</td> <td>s</td> <td>S</td> <td>•</td> <td>•</td> <td>٠</td> <td>9</td>	С	s	(C)		S	с	S	s		s	s	S	•	•	٠	9
12 .	(C)	s	s		S	S	(C)	С		S	С	S	•	•	•	10
13 C S M (C) S (C) S <td>С</td> <td>s</td> <td>s</td> <td>s</td> <td>М</td> <td>S</td> <td>S</td> <td>С</td> <td></td> <td>(C)</td> <td>s</td> <td>s</td> <td>•</td> <td>•</td> <td>•</td> <td>11</td>	С	s	s	s	М	S	S	С		(C)	s	s	•	•	•	11
14 . . S C S C S	С	s	м	м	S	С	с	(C)	C	S	S	(C)	•	•	•	12
15 . . (C) S C S S (C) (C) C C (C) C 16 . . S S C (C) S	м	s	G	s	S	s	(C)	S	(C)	м	S	С	•	•	•	13
16 . S S C (C) S S S (C) C S S (C) C S S S (C) C S S S (C) C S S S S C S S S C C S S S C C S </td <td>м</td> <td>(C)</td> <td>S</td> <td>S</td> <td>S</td> <td>s</td> <td>S</td> <td>S</td> <td>с</td> <td>s</td> <td>С</td> <td>S</td> <td>•</td> <td>•</td> <td>•</td> <td>14</td>	м	(C)	S	S	S	s	S	S	с	s	С	S	•	•	•	14
17 . . C S C S M S S (C) C S S 18 . . S (C) (C) (C) S (C) S S C S S 19 . . S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C M C M 20 . . S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S S C <td>s</td> <td>С</td> <td>(C)</td> <td>С</td> <td>С</td> <td>(C)</td> <td>(C)</td> <td>s</td> <td>S</td> <td>С</td> <td>s</td> <td>(C)</td> <td>•</td> <td>•</td> <td>•</td> <td>15</td>	s	С	(C)	С	С	(C)	(C)	s	S	С	s	(C)	•	•	•	15
18 . . S (C) (C) S (C) S S C C S 19 . . S C S S C S S C S S C M C M 20 . . S S C S S C S S C M C M 20 . . S S C (C) C (C) M C M 21 . . (C) S (C) C S S C S S C S S C S 22 . . S S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S S C S	(C)	(C)	С	(C)	S	S	s	s	(C)	С	s	s	•	•	•	16
19 . . S C S S C S S C M C M 20 . . . S S C (C) (C) S C C M C M 20 . . . S S C (C) (C) S C C M (C) C 21 . . . (C) S (C) C S S C S S C S S C S S C S S C S S S C S S S S S S S S S S C S	С	s	S	С	(C)	S	S	м	s	С	s	С	•	•	•	17
20 . . S S C (C) (C) S C (C) C 21 . . (C) S (C) S (C) C S S C S 22 . . S S S C S S C S S C S 23 . . S C S C S S C S S C S S C S S C S S C S </td <td>С</td> <td>s</td> <td>s</td> <td>С</td> <td>С</td> <td>S</td> <td>S</td> <td>(C)</td> <td>s</td> <td>(C)</td> <td>(C)</td> <td>S</td> <td>•</td> <td>•</td> <td>•</td> <td>18</td>	С	s	s	С	С	S	S	(C)	s	(C)	(C)	S	•	•	•	18
21 .	с	м	c	м	(C)	S	S	С	s	s	С	S	•	•	•	19
22 . . . S S S C S S C M (C) S S 23 . . . S C S C S C S C S C S C S C S S C S S C S S C S S C S S S S S S S S S S S S S </td <td>s</td> <td>С</td> <td>(C)</td> <td>м</td> <td>С</td> <td>С</td> <td>S</td> <td>(C)</td> <td>(C)</td> <td>С</td> <td>s</td> <td>s</td> <td>•</td> <td>•</td> <td>•</td> <td>20</td>	s	С	(C)	м	С	С	S	(C)	(C)	С	s	s	•	•	•	20
23 S C S S C S S .	s	s	С	S	S	С	s	S	С	(C)	s	(C)	•	٠	•	21
24 . . . S (C) S C S S (C) C S S C 25 . . . (C) S C C S C S C S C S C S C S C S C S C S C S C S C S C S C S C S C S C S C S S C S S C S S C S S C S S C S <td< td=""><td>(C)</td><td>s</td><td>S</td><td>(C)</td><td>м</td><td>С</td><td>S</td><td>S</td><td>С</td><td>s</td><td>s</td><td>S</td><td>•</td><td>•</td><td>•</td><td>22</td></td<>	(C)	s	S	(C)	м	С	S	S	С	s	s	S	•	•	•	22
25 . <td>С</td> <td>s</td> <td>(C)</td> <td>S</td> <td>S</td> <td>С</td> <td>S</td> <td>S</td> <td>С</td> <td>s</td> <td>С</td> <td>S</td> <td>•</td> <td>•</td> <td>•</td> <td>23</td>	С	s	(C)	S	S	С	S	S	С	s	С	S	•	•	•	23
26 . . M C C S C C M M (C) S S 27 . . M (C) (C) S (C) (C) S C S C S S 28 . . . C C C C S C S C S	С	С	S	s	С	(C)	s	S	С	s	(C)	S	•	•	•	24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s	(C)	S	С	С	S	С	S	С	С	S	(C)	•	•	•	25
$28 \cdot \cdot C C C C C C S S C S C S$	s	S	S	(C)	м	М	С	С	S	С	с	М	•	•	•	26
	С	s	С	S	С	S	(C)	(C)	S	(C)	(C)	М	•	•	•	27
29 · · · S S (C) C M S (C) M S S	(C)	s	С	S	С	S	s	С	С	С	С	С	•	•	•	28
	С	S	s	м	(C)	S	м	С	(C)	s		S	•	•	•	29
3º · · · S S S S M (C) S S S C	м	С	s	S	S	(C)	М	s	s	S		S	•	•	•	30
3 ¹ · · · S S S S S C VG	М	•••	V G	•••	С	S	S	S	•••	S		S	•	•	•	31
C 10 15 13 15 12 10 14 15 9 11 8	15	8	11	. 9	15	14	10	12	15	13	15	10	•	•	•	с.
S 19 12 17 10 17 17 16 13 13 17 19	11	19	17	13	13	16	17	17	10	17	12	19	•	•	•	S.
M 2 I I 2 3 I 3 4 I 2	5	2	I	4	3	I	3	2		T	I	2	•	•	•	М.
G I I			I	•••		•••	• •••		I			•••	•	٠	•	G.
V.G I I		I	I	•••		•••				•••	•••		•	•	•	V. G.

Hourly means of Horisontal Force in C. G. S. Units (corrected for Temperature) at Dehra Dún from the selected quiet days in 1903.

TABLE V.

NO. 26 PARTY (MAGNETIC).

sontal Force at Dehra Dún as deduced from Table V.	3 4 5 6 7 8 9 10 11		x x x x x x x x		+ 2 0 -3 -3 -3 -3 -3 -5 -2 -3 02	+3 0 -3 -5 -6 -6 -4 -4	+3 -1 -1 -1 -1 +3 +2 +3 +2 H	+3 -3 -3 -5 -7 -10 -12 -9 -10 ×	+1 -2 -2 -2 -4 -3 -2 -1 -4 W	+2 -1 -2 -2 -3 -3 -4 -2 -3		+9 +2 -3 -5 -5 -5 -4 -4 -4	+11 +7 +2 -2 -4 -3 -2 0	+8 +3454334	+12 +6 -2 -6 -6 -6 -4 -4 -2	+11 +7 +11343 0 +1	+9 +4 +2 +2 +1 0 +2 +3 +4	+10 +51344211	
luced fr	8		~	Ŧ	+5	8 +	6+	8 +	+3	-0 +		+14	+ 15	+12	+ 15	+13	+13	▼ 1 +	
as dea	1		~		+	01+	+ 15	+ 15	+5	+10		+14	+ 16	+13	+14	+13	+13	* +	e mean.
a Dún	Noon.		~	-		+13		+ 19	+	\ +		= + -	+ 13	+ 10	01+	+	+ 6	6 <u>1</u> +	NorgWhen the sign is + the reading is above the mean.
Dehra			~		01+	+13	+3	+14	+	*		+	+	+	+	+	Ĩ	++	ading is
rce at	10	Winter.	~	Ĩ	+	01 +	1	01+	+	+ 0	Summer.	++	Ī 		1	Ĩ 	-10	ĩ	2 943 +
ital Fo	•	5	*	+	+	+	Ĩ	2 +0	+	+	S.	1 +3	8 - 7] م	1		11	Ĩ	e sign is
orison	8		<u>۲</u>	5 + 4	•	ہ ج	۲ ۲	2 + 6	3 + 5	+3			2		35	5 _9	7 -13	Ĩ	When th
the H	2		~	+ +5		<u>اً</u>	3	1 +3	2 +3	1+		-	4	1	<u>اً</u>	-3 -5		•	Note
lity of	<u>ہ</u>		*	4 +	2 	يد را	3 3] 				ן ג	+	-53		I I I +	3	
Diurnal inequality of the Hori	<u>ع</u>		~	+1 +3	- <u></u> 	۲ ۲] } +		-3 -3	3		 	ן ק	ī	ו 	آ ۲	+ + +	-3	
rnal 1	4		~	+	۲ ۲	٦ ٩	T ï	ا ۲	1	3		ا ۳	ĩ	ן ו		ı V	•	1	
Diu				+ 	۱ ۲	۱ ۳	1	- 	1	+		ן ו	1		 ī	Ϋ́	ĩ	3	
			x 	ī	י ۳	- -	ř	י פון		- <u>-</u>		Î	, ,	โ		۔ ۲	ī	4	
	Mid.		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		- - -	ř	ĩ	• •	Ĭ			۲	- 1	ī		ŕ	ĩ	1	
	W				•	•	<u>.</u>	•	•	<u> </u>		•	•		•		•	·	-
				•	•	•	•	•	•	•		•	•	•	•	•	•	•	
	Hours.		1 903, Months.	January .	February.	March .	October .	November .	December .	Means		April .	May	June .	Juty	August .	September •	Means .	

TABLE VI.

NO. 26 PARTY (MAGNETIC).

TABLE VII.

. Hourly means of the Declination at Dehra Dún as determined from the selected quiet days in 1903.

Hours.		Mid.	н		6	4	×)	v	4	ø	0	2	81	Noon.		ŧ	ب	*	s	•	7	•0	Ø	10	1	Means.
	Õ	clinatic	Declination East 2°+	2°+								M	Winter.			1										
1 go3, Months. January •	•	42.6	42.7	42.5	43.3	42.2	1.24	43.3	42.3	43.0	43.8	0.17	12.7	6.1*	41.9	42.1	42.1	43 .4	42.7	43.0	43.0	43.0	6.54	6.24	42.9	4 2.6
February .	•	42.5	42.6	42.4	42.4	42.3	43.3	42.0	42 2	42.8	43.3	43.2	43.1	42.4	41.9	41.8	41.8	42.1	42.5	42.5	42.6	42-6	42.6	42.2	42.2	43.4
March .	•	42.1	42.2	42.1	42.0	41.9	41.9	41.9	42.4	43.4	44.3	44.2	43.1	41.6	40.7	\$0.5	41.3	42.0	42.3	42.3	43.1	43.1	z.zt	42.2	42 3	42.3
October .	•	41.3	41.3	41.3	0.14	41.0	41.0	41.1	6.14	42.8	42-8	41.9	40.4	39 0	38.8	9.68	40.7	1.14	1.14	41.0	40.9	40.9	6.04	4 0. 9	41.1	0.14
November .	•	41.7	41.6	41.7	41.6	41'2	41.2	41.3	41.5	42.5	43.0	6.14	41.0	8.04	40.4	41.0	41.6	41.9	41.8	41.6	41.8	41.8	41.7	41.9	42.1	41.6
December .	•	41.8	12.0	41.9	41.9	41.6	41.6	†. 1†	41.3	41.4	6.14	1.0\$	41.7	e.17	41.3	41.5	41.9	41.8	41.7	41.8	41.7	41.7	41.6	41.6	41.8	41.7
Means.	•	42.0	42'1	42.0	41'9	41.7	41.7	41.6	6.14	42.6	43.5	42.9	42.0	1.14	40.8	41.1	41.6	6.14	42.0	42.0	42.0	42.0	42.0	42.0	42'1	41.9
												Sun	Summer.													
April .	•	42.7	42.7	42.8	42.8	43.2	42.4	4 2 .5	43.5	44.4	44.0	43.9	43.0	40.5	39.7	6.68	40'9	41.8	42.4	43.4	42'2	42.1	1.21	42.2	43.3	42.3
May	•	41.4	41.5	41.6	41.6	41.5	41.7	42.8	43°7	44.0	43°3	42.3	40.7	39.6	39.3	39.5	40.0	40'5	41.0	41.3	40.9	40.7	40.7	6.o t	41.0	41.3
June .	•	41.3	41.4	41.6	41.6	41.6	41.9	43.4	44.6	44.6	43.6	42.1	39,6	38.5	37.9	38.0	38.7	6.68	40'9	41.3	41.0	40.9	1.14	41.4	41.5	41.2
July	•	1.14	41.3	41.3	41.4	41.4	41.6	42.7	43.1	43.7	43.0	41.7	39.7	38.5	38.1	37.8	38.6	39.6	40.7	41.2	41.2	1.14	1.14	41.2	41'3	0.14
August .	•	41.4	41.5	9.17	6.14	41.8	1.24	43.4	44.3	44.5	43 6	42.0	0.07	38.9	9.88	1.68	40.0	1.14	41.4	41.4	41.1	41.3	41.0	41.0	41.3	†1 .†
September .	•	40'1	40.3	40.4	40.4	40.5	40.0	41.4	43.6	43.1	42.1	40.1	38.1	36.7	30.0	37.7	39.3	40.4	40.7	40.2	40°0	30.0	6.68	0.01	40.0	40 .0
weans .	•	41.3	41.4	41.5	41.6	41.6	41.7	42.7	43.7	44.1	43.4	42.0	40.1	3 8 .8	38.4	38.7	9.6£	40.6	41.3	41.3	41'1	41.0	41.0	41.1	41.2	5 .14

NO. 26 PARTY (MAGNETIC).

12	
na.	

TABLE VIII.

NO. 26 PARTY (MAGNETIC).

						Diu	rnal in	Diurnal inequalities of the	ties of	•	eclina	tion a	Declination at Dehra Dún as deduced from Table	ra Dúi	n as di	pəənp:	from	Table	VII.							
Hours	۲ ۲		Mid.	-		ب	4	~	ø	2	∞	6	01	11	Noon.	-		3	4	2	9	7	∞	0	01	=
												Vi.	Winter.													
1903, Months.	03. ths.		<u>·</u>	`	` 	` 	`	•	`	`		•	`	•	•	•	<u> </u>	`	 、	``	``			•	 、	
January	•	•	•	1.0+ 0	1.0-	-0.3	4.0	-05	4.0-	.°.	+0.4	+ 1.3	<i>*.1</i> +	+	- 6.0-	- 6.0-	-0.5	- 5.0-	+ 0.3	+ 1.0+	+ 0.4	+ 0.4	+0.4	+ 0.4 +	+0.3	+ 0.3
February	•	•	1.0+	7 -0.5	•	•	Î	5. 0	4.0-	- 0.3	+ 0.4	6.0+	8.0+	+0.2	•	-0.2	9.0-	9.0-	-0.3	+0.1	+ I.0+	- 5.0+	+0.3 +	+ 0.3 +	- 1.0+	1.0+
March .	•	•	1.0-		I.0 0	-0.3	-0.3	.	-0.3	7 .0+	+1.3	1.0+	+2.0	6.0+	. 9.0 -		-1.1	- 6.0	+ -0.3	+ 1.0+	- 1.0+	1.0	1.0-	0	0	1.0+
October	•	•	+0.3	£.0+	+0.3	•	•	•	1,0+	6.0+	8.1+	8.1+	6.0+	• • • •				+ .0-	+ 1.0 +	1.0+	0	- 1.0-	1.0-	1.0-		1.0+
November	•	•	1.0+		1.0+ 0	•	-0.4	-0.4	Þ .0—	1.0	6.0+	+3	10.3	9. 0	-1.3		9.0	•	+ 0.3 +	z .0+	•	- 2.0+	+ 0.5	1.0+	+0.3	+0.5
December	•	•	1.0+	+0.3	1 + 0.5	+0.3	1.0—	1.0-	 	†. 0-	-0.3	7 .0+	<i>*.</i> 0+	0	-0.2	-0.4	T 0.3	+ 0.3	1.0+	0	1.0+	0	0	1.0-		1.0+
Means.	•	•		1.0+	1.0+	•	0.3	c .0	£.0-	0	+0.2	+1.3	0.1+	1.0+	8.0	Ę	8.0-	E.o-	0	1.0+	1.0+	1.0+		1.0+	1.0+	7 .0+
												Sum	Summer.													
April .	.		7 .0+	+0.4	+0.4 +0.2	5 .0+	+ 0.5	1.0+	z.0+	5 .1+	+ 3.1	9.8+	9.1+		1.8	9.8-		+.1-	-0.2	- 1.0+	1.0+	- 1.0-	6 .0	-0.3	1.0-	•
May .	•	•	1.0+	1+0.5	s + 0.3	\$ +0.3	7.0+	+0.4	+ 1.5	+2.4	+ 3.2	+ 2.0	0.1+	9.0-	-1.7	0.8-	8.1-	- 1.3	8.0 	- 0.3	- 1,0	-0.4	9.0-		4.0	0.3
June .	•	•		0 +0.2	2 +0.4	* .0+	+0.4	L.0+	+ 2.3	+3.4	+3.4	+ 2.4	6.0+	-1.3	-3.7	-3.3	-3.3	-2.2	-1.3	-0.3	- 1.0+		-0.3	- 1.0-	+0.3	E .o +
July .	•	•	1.0+ ·	1+0.3	8 +0.3	+0.4	† .0.†	9.0+	41.7	4 2.2	13.7	+3.0	1.0+	-1.3	-3.2	- 5.0	-3.3		-1.4	-0.3	+0.3	+0.5	- 1.0+	- 1.0+	+ 0.3	+ 0.3
August .	•	•	•	1.0+ 0	5.0 +	£. 0+	+0.4	L.0+	+3.0	6.2+	+ 3.1	+2.3	9.0+	-1.5 -	-3.2	-2.8	- - -	-1.4	-0,3	O .	0	.0.3	1.0-	-0.4	-0.4	5 .0
September	•	•	1.0+	+ 0.3	+0.4	+0.4	+0.5	9.0+	+1.4	+2.0	+3 [.] r	+3.1	1.0+	6.1-	-3.3	-3.4	- 3.3	-0.1	+ 0.4 +	+ 0.4	z .0+	0	- 1.0	1.0-	0	•
Means .	•	•	1.0+	+0.5	:0+	+0.4	+0.4	+ 0.2	S.1+	S.e +	6.8+	+3.3	8.0 +		-3.4	-2.8	- 3.2	9.1-	9.0 -	0	- 1.0+	1.0-	. .0	7 .0-	1.0	•
							Note	NorgWhen the sign is + the m	sign is	+ the ma	gnet poi	nts to th	agnet points to the east of mean position and when to the west.	mean po	sition an	d when	- to the	west.					1	1		I

•

•

.

tograph records in 1903.	
Statement of loss of Magnetograph records in 1903.	Пенва Пим Песевиатови

TABLE IX.

Dehra Dûn Observatory.

		Cause of Interruption.		Clock cord broke. New cord fitted, Basses cleaned. Not known. Glasses cleaned. New mirrors fitted. New mirrors fitted. Trace went off paper owing to the very great disturbance. Lamp failed. Lamp got smoky.	
		Duration.	ë F	26 10 26 10 48 13 0 54 3 1 3 1	118 53
DECLINATION MAGNETOGRAPH.	.46.	On	Date	9th April	TCTAE .
ON MAGNI	PERIOD OF BREAK.	12	h. H	10 12 10 16 12 6 10 4 16 16 8 27 	
DECLINATI	Ps	On	Date	8th April	
		From	h. m.	19 55 8 36 9 51 9 51 9 59 9 59	
	Duration	of break.	ų.	26 14 1 1 16 16 21 21 23 21 23 24 2 2 2 2 2 2 2 2 2 2 2 2 2	100 43
HORIZONTAL FORCE MAGNETOGRAPH.		uO	Date	9th April 1.1th ", 3oth ", 3rd September 5th ", 1.1th ", 3.1st October 1st November 2.3rd December	TOTAL .
FORCE M.	PERIOD OF BREAK.	To	н . Н	10 1 2 10 40 116 16 116 16 12 24 3 20 10 7	
HORIZONTAL	Period	On	Date	8th April roth " 3oth " 3rd September 4th " 9th " 1st November 23rd December	
		From	.e .e	19 55 8 36 11 0 16 36 0 20 8 5 8 5	ï

NO. 26 PARTY (MAGNETIC).

KODAIKÁNAL MAGNETIC OBSERVATORY.

1. During the year 1904, the magnetograph room has never been thorough-

ly dry. Its condition has certainly been General remarks. improved by the adoption of the additional precautions detailed in the last annual report, and it is doubtful whether any further improvement can be expected. The trouble arises not only from percolation through the earth slopes and thence through the masonry, but also from actual springs in the foundation rock itself. One small spring was detected during construction and successfully dealt with by means of a drain, but another spring seems to exist under the concrete floor of the inner room. At all times, but particularly after heavy rain, water forces itself up in small quantities through the north-east corner of the floor and thus keeps the room from drying thoroughly. A very free use has been made of blankets and of calcium chloride to keep the room reasonably dry, but the atmosphere remains practically saturated and there has been much trouble with the instruments in consequence. The declination magnetograph has suffered on several occasions from interference produced by delicate fungoidal growths, which could only be removed by opening out the instrument, and it is curious that the H. F. instrument seems to have been entirely free from this trouble.

There were several changes in the staff, as H. N. Gupta, the Observer who replaced Mr. Theodore, had to resign his appointment owing to ill-health. His place was taken first by one of the field observers specially withdrawn for this purpose, and later by the spare observer, till finally a new candidate for the post was enlisted and trained.

Tabulated results are now published from August 1902, when the Observatory was started till the end of 1903. The form of tabulation is the same as for Dehra Dún and Barrackpore.

The declination results.

				up	to the end	l of 19)03 :-	-	
Mo	onth.		Magnetic Coll	imation.	Мо	onth.		Magnetic Coll	imation.
			,	n				,	"
August	1902	•	-2	12	May	1903	•	2	15
September	"	•	-2	14	June	"	•	2	ıб
• October	"	•	-2	16	July	"	•	2	13
November	,,	•	-2	18	August	•	,	-2	10
December	"	•	-2	15	September	,,,	•	-2	14
Jan uary	1903	•	-2	'I 2	October	"	•	-2	13
February	,,	•	-2	I 2	November	**		- 2	13
March	")	•	-2	I 2	December	"		-2	14
April	,,	•	2	10					
								Ì	

2. The following table gives the mean magnetic collimation of magnet 16 up to the end of 1903 :---

The value has evidently remained practically constant. For the first seven months in 1903, the declination trace was so unsatisfactory that no attempt has been made to tabulate the results. During this period the base line values were far from constant and the curves were full of sharp breaks, due presumably to interference caused by the fungoidal growths which have given so much trouble at Kodaikánal. From August onwards the magnet was given a large deflection every day in order to free it completely, and the base line values prove that this measure had the desired effect.

3. Needles Nos. 1 and 2 were used in Dip Circle No. 46 till the 19th The Dip results. Coctober 1903, when it was found that needle No. 1 suddenly commenced giving

results about 10' too low. No explanation of this sudden change was given by the observer, but it was probably due to an injury to the pivot resulting from a fall. On the 5th November 1903, needle No. 3C., (recently fitted with a new pivot by Dover) was taken into use and has given fairly accordant results ever since.

The following table shows the mean monthly differences between the needles of Circle No. 46:---

	Mon	th.			Dip Circle No. 46. Needle 1-Needle 2.	Remarks.
					,	
September	1902	•	•	•	-1.2	
October	• >>	•	•		—I'I	
November	"	•	•	•	— 0·8	
December	"	•	•	•	-1.5	
Janua ry	1903	•	•	•	0*5	
February	,,	•	•	•	o 3	
March	,,	•	•	•		
April	"	ı	•	د	— 1·6	
May	,,	•	•	•	o·8	
June	>>	•	•	•	-0.3	
July	"	•	•	•	-0.4	
August	,,	•	•		0 ·7	
September	,,	•	•	•	o·8	
October))	•	•	•	— I`0	Up to 15th October only
					Needle 2—Needle 3C.	
November	1903	•	•	•	+ 0.7	
December	"	•	•		+0.1	

The accordance of the results is as good as can be expected from this class of instrument. 4. Monthly mean values of constants

1	ne iorce (observ	ations.	of M	lagnetome	eter No. 16 at Kodaikánal.
Mor	nth.		М _° .	P from 22'5 and 30 cms.	P. from 30 and 40 cms.	Remarks.
September	1902	•	926 · 47	6.69	8.00	The values of m, are computed from the mean P (at 22.5 and 30
October	1)		926.41	6.90	8 [.] 51	cms) for each year.
November	97		926.47	6.86	8.28	
December	, ,	•	926.41	6 [.] 86	8 [.] 36	
January	1903	•	926.47	6.94	8.38	
February	"	•	92 6·4 6	6.77	8 [.] 44	
March	13	•	926.34	6 80	9.21	Only one set of observations.
April	,,		9 2 6 · 24	6·86	8.30	
May	3 7	•	9 2 6·24	6.92	8.74	
June	"	•	9 2 6·21	6.89	8 [.] 60	
July	,,	•	9 26 ·2 7	6 [.] 75	9 [.] 01	
August	,,	•	926.34	6.90	8.45	
September	,,	•	926.39	6.93	8.24	
October	,,	•	926.39	6.80	8.49	
November	»	•	926 [.] 38	6.96	8.39	
December	"	•	9 2 6 · 41	7.00	8 [.] 75	
				· · · · · · · · · · · · · · · · · · ·		•

The accordance of these figures prove that the observations were carefully taken, and the base line values deduced therefrom may be accepted with confidence.

MEAN MONTHLY BASE LINE VALUES AND TEMPERATURES AT KODAIKÁNAL **OBSERVATORY**.

H. F. magnetograph	No. 2 by Professor	W. Watson, F.R.S., 1902 and	1903.
0 0 1	• •		

Mont	h.	•	Temperature of H. F. Instrumental cent.	Scale value of o [.] 04 inch.	Base Line value C. G. S.	Remarks,
			o	γ		
August	1902	•	17.13	6.13	0.32068	13th to 15th only.
September	,,	•	17.20	6.14	62	
October	"	•	17'97	6.12	52	

72

The force observations.

NO. 26 PARTY (MAGNETIC).

MEAN MONTHLY BASE LINE VALUES AND TEMPERATURE AT KODAIKÁNAL Observatory—contd.

Mon	th.		Temperature of H. F. instrumental cent.	Scale value of 0°04 inch.	Base line value C. G. S.	Remarks.
November	1902	•	° 18. 42	γ 6'19	. 41	
December	,,	•	18.57	6.12	31	
January	1903	•	18.79	6.12	31	Up to 10th January only.
> 7	,,	٠			0 [.] 37057	Instrument adjusted values from 28th January only.
February	3 >	•	19.23	6.13	50	
March	,,	•	19'34	6.16	50	Only two values on 4th March.
April	"	•	19'76	6.33	35	
May	,,	•	19.98	6.12	22	The base line values are referred to a temperature of 19° cent., the
June	,,	•	19.94	6.14	17	temperature co-efficient used in the reduction being + 1°cent.=-12.6y.
July	"	•	19.90	6.13	22	
August	· <i>1</i> 2	•	20'02	6.14	23	
September	"	٠	20.34	6.14	22	
October	,,	•	20.40	6.13	23	
November	3,	•	19.96	Q.11	26	•
December	",		19.61	6.11	22	

H. F. magnetograph No. 2, by Professor W. Watson, F.R.S., 1902 and 1903-contd.

During 1903 the range of temperature in the inner room was very small and since then it has been still reduced. The true daily range is entirely obscured by variations in the height of the lamps, and is so small that the use of the thermograph which was originally installed has been discontinued, temperatures at intermediate hours being found by direct interpolation between the daily readings.

During the year 1902 the decrease in the base line values shows that the system was gradually giving way and settling down. After the re-adjustment in January 1903, the same thing is noticeable until May, after which the base line values show very little variation.

5. During the year 1904 the weather was abnormally fine, and there was The new referring mark. which is quite close to the Observatory was seldom needed. Its azimuth measured clockwise from true south, is 104°

24' 34".

L

TABLE L

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.Observer.Value of m_e $P \text{ from } 3^{\circ} \text{ graved} 3^{\circ} $			rvations of I)
Date. Observer. Value of m _o P from go cms. P from do cms. P from do cms. Value of m _o Value of do cms. Value of m _o Value of m _o P from do cms. Value of m _o Value of m _o P from do cms. Value of m _o P from do cms. Value of m _o Value of m		I		4	- 5	6	, ,	8	9
August 12 H. F. 929'16 6'83 7'76 '37372 12 ,, 928'95 364 12 ,, 928'95 364 13 C. T. 6'70 8'18 355 '37398 68 14 , 929'50 6'85 7'11 403 '37398 68 14 , 929'50 6'85 7'11 403 '37398 68 14 , '29 395 65 15 , 395 65 15 , 446 81 15 , 437 62 3 , 926'79 6'12 8'37 389 76 3 , 926'68 6'36 8'00 411	Obse	Date.	er. Value of m	o. 22.5 an	d 30 and	Values of Horizontal	mean observed value of	values corrected for	Monthly mean Base Line values.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1902.	C. G. S.	C. G. S	.C.G.S	. C. G. S.	C. G. S.	C. G. S.	C. G. S.
12 ,, 928'95 364 13 C. T. $6'70$ $8'18$ 355 37063 13 ,, $6'70$ $8'18$ 355 711 14 ,, 929'50 $6'85$ $7'11$ 403 '37398 68 14 ,, '29 395 65 15 ,, '37,772 730 430 72 15 ,, 446 81 15 ,, 446 63 15 ,, 437 62 15 ,, 437 62 3 ,, 926'79 $6'12$ $8'37$ 380 55 3 ,, 927'06 $373'85$ 65 10 ,, 926'78 $8'28$ 38	H. 1	August 12	929-16	6.83	7.76	·37372	}		
13 C. T. 6'70 8'18 355 '37063 13 36'8 71 40'3 '37398 68 14 929'50 6'85 7'11 40'3 '37398 68 14 '29 395 '37398 68 14 '29 395 '37398 68 15 '37 7'22 7'30 430 72 15 446 81 15 446 63 Sept. 3 446 63 3 '51 7'4'''' 757 380 53 6 '51 7'4'''' 757 380 53 6 926'68 6'36 8'00 411 65 10 '25 3924 55 </td <td>"</td> <th>12</th> <td>· ···</td> <td>•••</td> <td>••••</td> <td>364</td> <td></td> <td>•••</td> <td></td>	"	12	· ···	•••	••••	364		•••	
13 ,,, 362 71 14 ,,, 929750 6*85 7*11 403 :37398 68 14 ,,, 29 395 655 711 15 ,,, 377 7*22 7*30 430 72 15 ,,, 377 7*22 7*30 430 72 15 ,,, 446 81 15 ,, 446 63 5ept. 3 ,, 92679 6*12 8*37 389 76 3 ,, 92679 6*12 8*37 389 71 6 ,, 51 7*48 7*57 380 53 6 ,, 927*06 402 55 10 ,, 926*68 6*36 8*04 384 59 13 ,, 4*0 365 53 24 ,, *38	,,	12	928.95	•••	•••	364		•••	
14 " 929'50 6'85 7'11 403 '37398 68 14 " '29 395 65 15 " '37 7'22 7'30 430 72 15 " '37 7'22 7'30 430 72 15 " ' ' ' 446 81 15 " ' ' ' 437 62 15 " ' ' ' 446 63 Sept. 3 " 926'79 6'12 8'37 389 76 3 " ' ' 359 71 6 " '.51 7'48 7'57 380 53 10 " 926'68 6'36 8'00 411 65 13 " '4'0 ' 394 '373'85 69 13 " '4'0 ' 362 59 53	C. 1	13		6.70	8.18	355		.37 063	١
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,,	13			•••	362		71	
15 " "37 7'22 7'30 430 72 15 " " " 446 81 15 " " 446 63 15 " " 446 63 15 " " 446 63 Sept. 3 " 926'79 6'12 8'37 389 76 3 " '04 " 359 71 6 " '51 7'48 7'67 380 53 6 " 927'06 402 55 10 " '25 ' 394 '70 13 " '96 6'85 8'04 384 '70 13 " '81 6'78 8'28 382 59 24 " '38 '365 53 53 27 " '53 6'57 '762 399 56		14	929 .50	6.85	7.11	403	37398	68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	14	.50			395		65	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,,	15	.37	7.22	7 .30	430		72	37068
15 n \dots \dots 446 63 Sept. 3 n 92679 $6\cdot12$ $8\cdot37$ 389 76 3 n $\cdot04$ \dots \dots 359 71 6 n 51 $7\cdot48$ $7\cdot67$ 380 53 6 n $927\cdot06$ \dots \dots 402 55 10 n $926\cdot68$ $6\cdot36$ $8\cdot00$ 411 65 10 n 25 \dots \dots 394 70 13 n 96 $6\cdot85$ $8\cdot04$ 384 70 13 n $4\cdot0$ \dots \dots 362 60 24 n $8\cdot1$ $6\cdot78$ $8\cdot28$ 382 59 27 n 53 $6\cdot57$ $7\cdot62$ 399 55 27 n 32 \dots \dots 390 56 Oct. 1 n $927\cdot09$ $7\cdot53$ $7\cdot25$ 383 57	,,	15				446		81	
Sept.3 n 926.79 6.12 8.37 389 763 n $\cdot 04$ \dots \dots 359 716 n 51 7.48 7.67 380 536 n 927.06 \dots \dots 402 5510 n 926.68 6.36 8.00 411 655 10 n 225 \dots \dots 394 77.875 13 n 26.68 6.85 8.04 384 69 13 n 4.00 \dots \dots 362 59 24 n 81 6.78 8.28 382 59 24 n 33 \dots \dots 355 53 27 n 53 6.57 7.62 399 55 27 n 322 \dots \dots 390 56 Oct. I n 927.09 7.53 7.25 383 57	,,	.15			•••	4 3 7		62	
3 " '04 " 359 71 6 " '51 7'48 7'57 380 53 6 " 927'06 402 55 10 " '25 402 55 10 " '25 394 '37385 65 13 " '96 6'85 8'04 384 '37385 69 13 " '96 6'85 8'04 384 '37385 69 13 " '96 6'85 8'04 384 '37385 59 24 " '81 6'78 8'28 382 59 24 " '38 '355 53 27 " '53 6'57 7'62 399 55 27 " '32 '390 56 Oct. 1 " '927'09 7'53 7'25 38'3 '57	,,	. 15				446)	63	
6 ,, '51 7'48 7'67 380 53 6 ,, 927'06 402 55 10 ,, 926'68 6'36 8'00 411 65 10 ,, 926'68 6'36 8'00 411 65 10 ,, '25 394 '37385 69 13 ,, '96 6'85 8'04 384 '37385 69 13 ,, 4'0 362 50 24 ,, '81 6'78 8'28 382 59 24 ,, '33 '365 53 27 ,, '53 6'57 7'62 399 55 27 ,, '32 390 56 Oct. 1 ,, 927'09 7'53 7'25 383 57	,,,	ept. · 3	926 [.] 79	6.13	8.37	38 9		76	
6 ,,, 927'06 402 55 10 ,, 926'68 6'36 8'00 411 655 10 ,, 25 394 70 13 ,, '25 394 '37385 655 13 ,, '96 6'85 8'04 384 '37385 69 13 ,, 4'0 362 '37385 59 24 ,, '38 365 53 27 ,, '33 6'57 7'62 399 55 27 ,, '32 390 56 Oct. I ,, 927'09 7'53 7'25 383 57	"	3	•04			359		71	
10 ,,, 926.68 6.36 8.00 411 65 10 ,,, '25 394 '373.85 69 13 ,,, '96 6.85 8.04 384 '373.85 69 13 ,,, '4.0 362 '373.85 69 13 ,,, 4.0 362 '59 59 24 ,,, '81 6.78 8.28 382 59 53 24 ,,, '38 '355 53 53 27 ,,, '53 6.57 7.62 399 55 55 27 ,, '32 390 56 56 Oct. I ,, 927.09 7.53 7.25 383 57 57	\$7	6	.51	7.48	7.6 7	380		53	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	"	6	9 27.0 6			-402		55	
I3"'96 6.85 8.04 384 '37385f69I3"4.03626024" 81 6.78 8.28 382 5924"'383555327"'53 6.57 7.623995527"'3239056Oct.I"927.097.537.2538357	"	10	926 [.] 68	6.36	8.00	411	·	65	
13 " 90 0 0 5 0 0 5 0 0 4 364 69 13 " 40 " 13 50 60 60 24 " 81 678 828 382 59 24 " 38 " 10 355 53 27 " 53 6.57 7.62 399 55 27 " 32 " 390 56 Oct. 1 " 927.09 7.53 7.25 383 57	29	10	.25			3 94		70	
24 " *81 6.78 8.28 382 59 24 " '38 " " 365 53 27 " '53 6.57 7.62 399 55 27 " '32 " " 390 56 Oct. I " 927.09 7.53 7.25 383 57	"	13	·96	6 [.] 85	8.04	384	37385	69	·370 62
24 ,,, 38 , , 355 53 27 ,,, 53 6.57 7.62 399 55 27 ,,, 32 , , 390 56 Oct. I ,,, 927.09 7.53 7.25 383 57	,,	13	4.0			362		6 0	
27 *, 53 6.57 7.62 399 55 27 32 390 56 Oct. 1 927.09 7.53 7.25 383 57	"	24	18.	6:78	8-28	382		59	
27 •, 53 6·57 7·62 399 55 27 · 390 56 Oct. I 927·09 7·53 7'25 383 57	"	24	.38			365			
27 " '32 390 56 Oct. I " 927'09 7'53 7'25 383 57	• >>	27	.53	6.57	7.62	399			
Oct. I ,, 927'09 7'53 7'25 383 57	"	27	.32		•••	1	/	1	
	"	oct. I	927.09	7.53	7.25		,		
	"	I				353		56	
2 ,, ··································	"	2	·04	7.22	9.12		.27280		
2 ,, 926·25 371 373°9 44))	· 2	926·25				3/309		-37389
4 " 6·91 8·60 390 56	"	4	•••	6 [.] 91	8 [.] 60				

Observations of Horizontal Force at Kodaikanal Observatory.

NO. 26 PARTY (MAGNETIC).

TABLE I-contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

б 8 9 2 4 7 t 3 5 Monthly Base Line Monthly Observed values of Horizonta P from P from mean values mean Base 22.5 and 30 and 30 cms. Value of mo. observed corrected Date. Observer. value of H. F. for Line Force. lemperature. values. C. G. S. C. G. S. C. G. S C. G. S. C. G. S. C. G. S. C. G. S. 1902. С. Т. .37050 Oct. 4 ·37347 ••• 926[.]64 50 6.83 8.56 8 414 " 48 8 .12 • • • 394 ... " 5б 8.28 6.03 42 E 11 ·92 ,, 396 .32 49 11 • • • ... " 432 63 I 2 ••• ••• ,, ... 47 12 • • • ... **4**2 I ••• ,, 926.87 6.54 8.93 56 409 15 ,, 388 56 15 **.**34 ••• ••• " 7.48 407 18 51 .77 7:37 ,, ·37389 18 .36 ••• 390 50 .37032 ••• " 19 ... 415 53 • • • ... " 60 410 19 ... ,, 8.00 662 •36 5 22 403 " 396 .19 54 22 ••• ... " 6.78 391 ·66 8.70 49 25 ,, .00 367 **4**I 25 ••• ••• ,, 6.67 356 44 **·**32 9'44 29 ,, 363 51 29 **'4**9 ••• ••• ", 6.46 **'94** 9.30 59 30 357 ,, 331 48 .30 30 ,, 6.83 **8**·28 ·64 379 45 5 . " 48 5 **5**3 ••• ••• 375 " 8.14 6 6.10 425 50 .14 ,, 6 .37390 401 .12 ••• ••• 45 ·37390 ,, 8 •**6**6 6.88 7**.90** 413 47 ,, 396 8 •23 40 ,, 7-62 ·68 7.01 394 42 12 ,,

Observations of Horisontal Force at Kodaikánal Observatory.

L 2

TABLE I-concld.

ABSOLUTE MAGNETIC OBSERVATIONS.

Observations of Horizontal Force at Kodaikánal Observatory.

 I	[2	3	4	5	6	7	8,	9
Dat	te.	Ob se rver.	Value of m _o .	P from 22'5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line values.
190	02.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Nov.	12	С. Т.	926 [.] 40			.37383	N	·37039)
	13	ور	[.] 64	6 [.] 78	8 [.] 46	409		51	
	13	"	.19			391		38	
	15	"	·62	6 [.] 67	7.62	415		47	
	15	,,	.10			395		42	
	19	,,,	·68	6 [.] 88	8 ·46	402		43	
	19	"	.30			387	·37390	38	37041
	22	"	·47	6.80	9.44	385		38	
	22	"	.30			378		37	
	26	,,,	.55	7.01	9.02	365		29	
	26	.,,	.42			360		27	
	29	")	.74	6.72	8 [.] 60	385		41	
	29))	·36			370		33	J
Dec.	3	, 1)	·36	7.19	8 [.] 46	334		25	\
	3	,,	.53			340		28	
	6	,,,	.34	6 ·80	8.42	393		37	
	6	,,	.13	••••		3 84		36	
	10	,,,	·81	7.01	8.28	395		42	
	13	"	·60	6.92	8 [.] 04	4 00		36	
	13	· 39	·49			396		34	
	17	.,,	· 4 5	6.72	8.93	396		29	.37031
	17	,,	.32		•••	390	'37391	29	
	20	,,	[.] 57	6 ·64	8.70	409		33	
	20	,,	•23			396		25	
	24	در	·49	6 [.] 93	8.14	388		28	
	24))	[.] 34	•••		3 82		26	
	27	"	[.] 47	.6.67	7.86	424		37	
	27	",	.12			416	}	31	ł
	31	- 11	.22	6.83	8.42	406		29	
	31	,	.51			392		20	J

.

.

Digitized by Google

.

TABLE II.

ABSOLUTE MAGNETIC OBSERVATIONS.

(I		2	3	4	5	6	7
Date.		Observer.	Magnetic Collimation	Observed Declination, West.	Monthly mean ob- served Decli- nation, West.	Base Line values.	Monthly mean Base Line values.
1902.			1	0 /	• •	,	,
Month. August	١Ę	С. Т.	27	-15.0		95.7	h
	16	"	2 17	15.0	0 15.2	9 5 [.] 8	95.8
	28	27	2 13	15.6	J	9 5 .9	J
September	2	,,	2 14	18.3	n	9 6.0	h
	5	,,	2 I I	14.2		95.6	
	9	"	2 18	18.3		95'9	
	I 2	"	2 11	19.0	0 17.7	96·2	≥ 96·1
N	23	"	2 19	18 [.] 9		96.1	
	26	"	28	17.3		ç6·6	
	30	'n	2 17	17.9	J	9 6·2	J
October	3		2 16	18.5		97 '3)
	7	,,	2 15	18.2		·	
	10	,,	2 12	19'2		97.5	
	14	,,	2 12	18.7		97.1	
	17	,,	2 24	19.2		97*3	
	21	,,	2 8	18.4	0 18.3	97 :0	97.1
	24	"	2 19	17.8		97.1	
	28	"	2 18	18 [.] 6		97.0	
	31	:)"	2 28	17.4		96.7	
	31	,,	2 12	17.0]	96 · 9	
November	4	,,	2 20	19.1	<u>)</u>	97.5)
	7	,	2 18	18.1		97 . 9	
	11	"	2 14	18'0		97'3	
	14	"	2 13	18.0		97'5	
	18	,,	2 16	17.6	>0 18 [.] 0	96 .9	97'4
	21	, n	2 24	17.1		97.3	
	25	13	2 18	17.5		97.5	1
	28	,,	2 23	18.5]	97'7	J

Observations of Declination at Kodaikánal Observatory.

.

ABSOLUTE MAGNETIC OBSERVATIONS.

Observations of Declination at Kodaikánal Observatory.

I		2	3		4	5	6	7
Date.		Observer.	Magn Collime	etic ution.	Observed Declination, West.	Monthly mean ob- served Decli- nation, West.	Base Line values.	Monthly mean Base Line values.
1902. Month.			,	*	۰ ه	.0 /	,	,
December	5	Т.	2	20	17.2	ן ו	97*3	h
	9	2 >	2	22	18.3		97.5	
ĩ	12	,,	2	20	1 0.0	}0 18 ∙7	97:3	
	26	3)	2	13	19.3		98 .0	} 97 [.] 7
	28	n	2	8	19.5		97.8	
	30	در	2	6	18.8	J	98.3	J

TABLE III.

ABSOLUTE MAGNETIC OBSERVATIONS.

Observations of Dip at Kodaikénal Observatory taken with Barrow's Dip Circle No. 46. Needles Nos. 1 and 2.

Date.		of obse	kánal . time rvation 4 hrs.)	Observer.	Needle No.	Оъ	served Dip.	Monthly mean for each needle.	Monthly mean.	Remarks.
1902. Month.		h.	m.			٥	,		0 /	
September	I	14	10	С. Т.	I	2	5 9° 6			
	I	14	16	31	2	3	0.2	No. 1		
	4	15	3	1)	I	2	55.6	2° 59.6′		
	4	15	3	,,	2	3	o .3			
	8	14	10	,,	I	2	59 ° 3			
	8	14	10	,,	2	3	1.3			
	ľI	14	1	,,,	1	2	5 ⁸⁻ 5	\rangle	3 0.3	
	ÍÌ	14	I	"	2	3	0.3			
	25	14	17	"	I	2	59 °5	No. 2		
	25	14	17	"	2	3	1.3	3, 1.1,		
	2 9	14	24	3)	I	3	1.1			
	29	14	24	"	2	3	2*6))	

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		i. M	ikánal . time rvation 14 hrs.)	1 2 1	Needle No.	ОЬ	served Dip,	Monthly mean for each needle.	Monthly mean.	Rbmarks.
1902.		h.	m.			0	,		• •	
Month	le									
October	6	14	11	M.A.S.	I	3	1.0	h	j	
	6	14	11	"	2	3	2.2	Ĩ		
	9	14	t4	37	I	3	oъ	No. 1		
	9	14	14))	2	3	1.1	3°0.7′		
	13	13	47	23	I	2	59'1			
	13	13	47	رو	2	3	0.2			
	16	14	16	"	I	3	1.0	}	3 1.3	
	16	14	16	,,	2	3	2.1			
	20	13	54	,,	I	3	0.3			
	20	13	54))	2	3	1.3	No. 2 3° 1*8'		
	23	14	3	,,,	I	• 3	1.3	3 10		
	2 3	14	3	"	2	3	2.3			
	27	14	13	"	I	3	1.0			
	27	13	54		2	3	3.1	J	J	
November	3	14	8	"	I	3	0'9)	, ,	
	3	14	8	9 7	2	3	1.1	No. 1 3° 1.9'	· † †	
	10	14	2	,,	I	3	1.8	3 19		
	10	14	2	,,	2	3	3.0			
	17	14	24	,,	1	3	2.8			
	17	14	24	,,	2	3	3.6			
	20	14	39	"	I	3	1.8		3 2'3	
	20	14	39	,,	2	3	2.7			
	24	14	3	,,	I	3	2.5	No. 2 3° 2'7'		
	24	۲4	3	,,	2	3	2.4			
	27	13	52	"	I	3	2 °0			
	27	13	52	"	2	3	2 .5)]	

.....

Observations of Dip at Kadaikónal Observatory taken with Barrow's Dip Circle No. 46. Nordies Nos. 1 and 2.

TABLE III-concid.

ABSOLUTE MAGNETIC OBSERVATIONS.

							•	-•		
Date.		L. M	aikánal I. time ervation 24 hrs.)	2	Needle No.	Ob	oserved Dip.	Monthly mean for each needle.	Monthly mean.	Remarks.
1902.		h.	m.			0	,		• •	· .
Month.										
December '	I	13	50	M.A.S.	I	3	2.6	h	h	
	I	13	50	,,	2	3	3.7	No. 1		
	8	14	6	"	I	3	2 .8	3° 1•9′		
	8	14	6) >	2	3	3 .3			
	II	13	59	>>	I	3	3.8			
	II	13	59	"	2	3	5.1			
	15	14	2	"	I	3	0.8			
	15	14	2	,,	2	3	3.0		3 2.5	
	18	14	3	,,	I	3	1,0		}3 2 °5	
	18	14	3	21	2	3	3.0			
	22	14	5	"	I	3	1.7	No. 2 3° 31'		
	22	14	5	,,	2	3	3.3	3 31		
	25	13	49	"	2	3	1.4			
	25	13	49	"	I	3	0. 7			
	29	13	48	"	I	3	1.0			
	29	13	48	,,	2	3	2.3	J	J	
	1			1	1					

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46. Needles Nos. 1 and 2.

NO. 26 PARTY (MAGNETIC).

.

TABLE IV.

Dates of Magnetic Disturbances at Kodaikánal in 1902.

F=10°-13'-50 L=77°-27'-46*.

1902.				Mon	THS.	
Dates.	August.	September.	October.	November.	December.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	းးးးးးးးးးးးးးးးးးးးးးးးးလိုက္လို႔ က က က က က က က က က က က က က က က က က က က	รรบบบิบรญบบบรรบรรรรร	ສບບສສບບບສບສບສ©ບບບສບສສບ©ສສ©ສບສສສ	ບບບເປົບບສເປັບບບບສອດບອີດອເງິບບ⊻ອອດອບເງິບ :	ບສບບິບບບບິສສສບ <mark>ສບບບບ</mark> ບິບບິນສສສສບບບບບິບ	
C S Total . { M G V.G.	8 5 2 	18 12 	16 15 	18 11 1 	22 9 	

NOTE.—The magnitude of disturbances is determined from Horizental Force traces.
 C = calm. S = slight. M = moderate. G = great. V. G. = very great.
 Days are reckoned ifrom Midnight to Midnight.
 The five selected quiet days in each month are distinguished by bra kets. The selections are made from the Colaba curves by the Director, Colaba Observatory. Unclassified days denote that the record was lost.
 August 24th was selected by O. C., No. 26 Party (Magnetic).

.

•••

M

in 1002.
vs in
iet aa
ino pa
Selecto
n the
l from the
odaikánai
at K
temberature)
l for
correctea
is. units (c
S
Force in c
orisontal
Ho

TABLE V.

		Hour	ly me.	ans of	Hori	sonta	l Force	ș in ç.	Gs. u	rits (co	rrecte	ed for	tempe	Hourly means of Horisontal Force in ç. Gs. units (corrected for temperature) at Kodaikánal from the selected quiet days in 1902.	r) at K	<i>codaik</i>	ánal J	rom t	he sel	ected g	<i>pwiet</i> a	iays in	1 1902			
Hours.		Mid.	-	a	6	4	S	•	2	8	6	01		Noon.	-			4	N	 0	-	60	6			Means.
+S 9 0 0022.		+				X						Winter.	ler.													,
	5	<u>م</u> ک	۲	۲	۶	*	ر ۲	γ	*	*	٨	8	٨	٨	~	~	٨	×	۲ ۲	، ۲	۲ ۲	*	*	~		
October .	•	365	366	366	367	366	365	361	361	381	410	431	437	424	408	395	383	376	373	372	369	366	365	366	365	381
November .	•	357	358	358	358	357	357	359	369	384	401	414	420	415	402	3 89	377	370	366	365	364	363	363	362	362	375
December •	•	361	363	363	362	362	362	363	369	380	394	401	407	404	398	387	377	367	363	363	363	363	362	363	364	373
												Summer.	ner.	•												
August .	•	S60	360	360	362	361	362	362	369	384	405	421	425	423	407	391	376	363	362	363	361	359	358	358	360	375
September	•	355	356	358	359	359	358	357	361	383	415	440	454	444	424	401	379	367	364	365	363	362	361	360	359	379
Means .	•	:	E	E		:	:	:	:	:	:	:	:		:		<u> </u>	:	:	:	:	:	:	:		

82

NO. 26 PARTY (MAGNETIC).

TABLE VI.

٠

Diurnal inequalities of Horisontal Force at Kodaikánal as deduced from Table V.

11	٨	—IS	-20	-16	Ĩ	ĩ	
01	٨	L1	6[-	<u> </u>	-13	0 	
6	Υ.	-17	118	-16	-12	11-	
80	٨	- 16	-17	-15	-12	°I I	
7	٨	-14	-10	-13	Ē	Î	
ø	×	[]	1	ĩ	01	0 1	
ν	~	<mark>ار</mark>	IS	Ĩ	Î	0 	
4	٨	-12	-13	ĩ	ĩ	٦	
я	×	1+	•	+	+	+ 4	
8	х	+ 16	+ 33	+14	+1+	+14	Nore:-When the sign is + the reading is above the mean. In August one selected quirt day was lost, as the observatory was started on 12th.
	~	+32	+45	+27	+27	+25	mean. is started
Noon.	×	+ 47	+ 65	+ 43	+40	+31	Note: $-W$ hen the sign is $+$ the reading is above the mean. one selected quirt day was lost, as the observatory was start
:	~	+50	+ 75	+56	+ 45	+34	ling is al
<u>0</u>	~	+46	19+	+ 50	+39	+ 38	the read st, as the
•	~	+30	+36	+ 29	+26	+21	gnis ÷ ywaslo:
8	*	6+	+	0	6+	+1	en the si quirt da
2	×	٦	-18		Ĩ	ī	B:-Wh selected
vo	~	-13	23	-30	-16	Ĩ	NoT Vust one
ŝ	~	13	121	-16	18	Ī	In Aug
4	*	-14	-30	-15	-18	Ī	
8	×	-13	-30	-14	17	ī	
"	~	-15	- 17		11	-10	
1	х	15	133		-17	Î	
Mid.	х	-15		-16	-18	21	
		•	•	•	•	•	
5		•	•	•	•	•	
Hours.		•	Ĕ		e	5	
		August	September	October	Nevember	December	

NO. 26 PARTY (MAGNETIC).

83

M 2

	1
	ľ
	ŀ
	ſ
	ł
1902.	-
2 2 2	
day	
quiet	
cted	ŀ
sele	$\left \right $
n the	
fron	
tán a i	Ī
odai	ŀ
at K	ł
ined	
term	
on as de	ľ
tion (ŀ
clina	
e Dei	
ly Means of the Declinatio	
sup	ľ
y Me	
Hourly M	
Н	Ī

TABLR VII.

		J. 20
Means.		
=		
0		
•		
80		
7		
Q		
s		
4		
n		
"		
-		
11 Noon.		
=	Winter.	
9		
•		·
••		
2		
•		
ß		
*		
69		
"		
-		
Mid.	+	
Hours.	West 0°+	Months, 1902.

	18.3	18.7	18.7	
	18.4	18-8	18.6 18.5 18.5	_
	18.5	18.9	S. 81	
	18.4	18.8		
	18.3 18.4 18.5	18.6	18.6	
	18.4	18-5		
	18.3	18.4	18.5 18.5	
	18.2	18.3	17.9 18.1 18.3	
	0.81	1.81 1.81	1.81	
	18.5 18.2	1.81	6./ 1	
	18.5	6.41	8.41	
	18.8	2.81	.18.2	
	1.61	8. 81	18.6	
	1.61	0.61	18 ·8	
	17.4 18.3	1.61	0.61	
	17.4	8.81	19.4	
	1.61	1.61	9.61	
	18.2 18.3 17.7	19.0 19.1 19.5	<i>4.61</i> 2.61 1.61	
	18.3	1.61	19'2	_
	18.5		1.61	
	• 18'4 18'4 18'4 18'4 18'5	6.81 8.81 6.81 6.81 8.81	18.7 18.7 18.9 19.0	
	18.4	18.8	6.81	
	18.4	18.9	18.7	
	18.4	6.81	18.7	
! 	18'4	18.8	1.81	
1902.	•	•	•	
Months, 1902.	October	November	December	

August • 177	1./1	S./1
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1		
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1	4 17	
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1	1 12.	
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1	.61	
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1	17.4	2.41
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1	17.3	17.5
• 17'3 17'2 17'3 17'1 17'1 17'0 16'6 16'1 15'2 15'4 16'3 17'4 18'4 19'1 18'1 17'5 16'8 16'3 • • 17'7 17'7 17'7 17'7 17'7 17'7 17'5 16'8 15'5 15'4 16'1 17'3 18'7 19'5 18'6 17'3 17'1	16.8	17.4
• •	16'3	1.61
• •	16.8	z. L1
• •	17.5	17.8
• •	1.81	18.6
• •	18.8	2.61
• •	1.61	5.61
• •	18.4	2.81
• • <th>17.4</th> <td></td>	17.4	
• •	16.3	1.91
• •	15.4	15.4
• •	15.3	2.51
• •	1 91	8.91
• •	9.91	5.61
• •	0./1	L.L1
• •	1./1	9./1
• •	e. L1	2.21
• •	17'2	2.21
• •	17.3	2.21
August . September .	•	•
	August .	September .

Summer.

NOTE.-In August means are derived from four selected days only.

NO. 26 PARTY (MAGNETIC).

TABLE VIII.

Diurnal inequality of the Declination at Kodaikánal as deduced from Table VII.

		•
	=	
	0	
	•	
	80	
	1	
	v	
	N	
	*	
	••	
	"	
	Noon	
	:	-
	0	
	<u> </u>	
	∞	-
	2	
	<u>م</u>	
	در	
	+	
	6)	
ŀ	"	
 	-	
ŀ	Mid	
	Hours.	

	1.0+	1.0+	c .0
	1.0+ 2 .0+ 1.0+ 2 .0+ 1.0+ 0.0	1.0+ 2.0+	+0.9 +0.7 +0.3 +0.1 -0.1 -0.5 -0.9 -0.8 -0.9 -0.7 -0.3 -0.1 -0.1 -0.1 -0.3 -0.3
	1.0+	1.0+	1.0-
	7 .0+	1.0-	1.0-
	1.0+	7 .0	-0.3
	0,0	£.0 -	E .0
	1.0	5.0	• -0. 4
	1.0- E.0- I.0- E.0+ S.0+ 8.0+ 8.0+ 0.0	+0.4 +0.1 +0.3 +0.1 -0.2 -0.8 -0.9 0-0. 0.0 -0.3 -0.3 -0.5 -0.1	9.0
	1.0	9.0-	8. 0.
	z .0+	8.0-	6.0-
	5 .0+	5.0	S .0
	8.0+	1.0+	1.0-
	8.0+	+0.3	1.0+
	0.0	† .0+	£.o +
	6.0- 2.1-	1.0+	+
	5.1-	* .0+	6. 0+
	9.0	8.0+	0.1+
	1.0-	+0.4	5.0 +
	+0.3	+0.3	+ o.4
	z .0+	z. 0+	oro oro + ora + ora + ora + iro
e	1.0+	1.0+	č .0+
	1.0+	5. 0+	o. ·
	9.0- 1.0- 2.0+ 2.0+ 1.0+ 1.0+ 1.0+ 1.0+	+o.1 +o.2 +o.3 +o.1 +o.3 +o.4 +o.8	0.0
	1.0+	1.0+	0.0
.•	•	•	•
1902	•	•	•
Months, 190 2 .	October	November	December

9	<u>6</u>
+ 0	+
°+	+
+0.3	z .0+
+ 0.3	z .0+
7 .0	0.0
£ .0 –	1.0
8. 0 	* .0 –
F.o	0 3
* .0+	£.0+
0.I+	1.1+
4.1+	0.2+
0.8 +	0.5+
+ 1.3	+1.3
£.0+	0.0
-17 -08 +0.3 +1.3 +2.0 +1.7 +1.0 +0.4 -0.3 -0.8 -0.3 +0.2 +0.3 +0.3 +0.3 +0.3 10.3	-3'1 -1'4 -02 +1'2 +2'0 +2'1 +0'3 -03 -0'4 -0'1 -0'0 +0'2 +0'2 +0'2 +0'2 +0'2
-1.7	I. 6
6.1-	°.
	6.0-
-0.5	0.0
· · ·	e .0+
0.0	1.0+
1.0+	e .0+
6.1- 0.1- 2.0- 1.0- 0.0 1.0+ 1.0+ E.0+	•. z - 1 .0- 0 .0 z .0+ 1 .0+ z
c .o+	e .0 +
•	
•	ь
August .	September

NOTE.-When the sign is + the magnet points to the west of the mean position; when - to the east.

NO. 26 PARTY (MAGNETIC).

	Cause of Interruption			Clock stopped.	"	Not known.	Lamps failed.	"	
	Duration	break.	н.	12 29	15 22	33	9 24	1 30	41 18
LTOGRAPH.		uO	Date.	19th August	20th "	23rd November	24th "	• "	Total .
N MAGNE	BRBAK.	To	Ë .4	10 29	11 22	12 13	10 24	15 5	
DECLINATION MAGNETOGRAPH.	PERIOD OF BREAK.	on	Date.	18th August .	19th "	23rd November	24th "	•	
		From	ч	22 0	30	0	0	13 35	
	Duration	break.	н.	12 29	15 22	2 23			30 14
HORIZONTAL FORCE MAGNETOGRAPH.		o	Date.	rgth August .	20th " -	23rd November			Total 3
RCE MA	RBAK.	To	Ē	52	8	23			····
L FOI	07 B		Ŀ.	10	1	r 12			
HORIZONTA	PERIOD OF BREAK.	0 n	Date.	18th August .	rgth "	23rd November			
		E.	Ė	0	0	0			
		From	غ	53	20	10			

Statement of loss of Magnetograph records for 1902, Kodaikánal Observatory.

•

,

· 86

NO. 26 PARTY (MAGNETIC).

TABLE I.

Absolute Magnetic Observations.

		2	3	4	5	6	7	8	9
Date.			Values of m _o .	P from	P from 30 and	Observed Values of Horizontal Force.	Monthly mean observed values of H. F.	Base Line values corrected for temperature.	Monthly mean
1903	3.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Jan.	3	С. Т.	926.60	6.83	8.88	'37411)	•37038	
	3	,,	.19			395		28	
	7	,,	·68	7.01	7.95	415		38	
	7	"	.12			395		28	37031
	10	,,	•53	6 ·98	•···	408		29	
	10	"	•45			404		24	V
	17	"	.49	6.98	8 ·84	3 ⁸ 3	37397		
	17	.,,	•66	•••		390			
	28	"	•62	6.85	8 •09	404		62)
	28	,,	.32			392		59	
	31	,,	•60	6 [.] 96	8.14	390		55	.37057
	31	,,	.30			378)	50	V
Feb.	7	"	•66	6.64	8.18	432	\mathbf{h}	бо	
	7	",	•32		•••	418		57	
	II	"	•57	6 •67	` 8·46	361		54	
	11	,,	•34			35^{2}		50	
	14	"	•72	6 ∙88	8.18	419		49	
	14	"	.13			395		42	
	18	"	[.] 64	6.85	8 [.] 70	363		51	
	18	"	•32			350	37390	47	.37050
	21	"	•55	6 [.] 70	8•56	405		52	
	21	"	'21			391		43	
	25	"	.77	6.88	8 .3 2	364		49	
	25	,,	•34			347		47	
	2 8	رر ا	•64	6.75	8 [.] 55	436		51	
	28	"	' 25			431		50	V
March	4	,,	·62	6 ·8ɔ	9.21	452)	52) .37043
	4	59	•об			430	5 ^{.37441}	47	Feb. and April.

Observations of Horizontal Force at Kodaikánal Observatory.

Absolutes Magnetic Observations.

1		2	3	4	5	6	7	8	9				
Date.		Observer.	Values of m _o .	P from 22.5 and 30 cms.	P from 30 and 40 cms.	Observed Values of Horizontal Force.	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line value.				
190	93.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.				
April.	4	С. Т.	926.34	6.75	8 [.] 04	394	$\mathbf{)}$.37040					
	8	,,	·42	7.06	8.14	330		32					
	8	"	.00			313		29					
	II	"	•49	6.83	8 • 98	379		42					
	11	"				353		33					
	15	31	[.] 45	6.83	7'95	413		42					
	15	ډر				3 ⁸ 4	100.006	3 5					
	18	"	•40	6 [.] 85	8.56	417	37406	38	37025				
	18	"	•00	·	•••	401		36					
	22	"	•36	6.85	8 •60	436		36					
	22	در	925.93			419		28					
	25	,,	926.06	6.98		4 54		31					
	25	"			,	4 43		28					
	29))	•17	6.75	7.86	4 86		39					
	29	19	•••			465	l l	31	Ų				
May	2	13	·02	6.85	8.00	42 3	1	35	١				
	10	"	•30	6.85	8.37	377		31					
	10	,,	·08			368		36					
	14	,,	925.96	6.73	8 •93	371		07					
	14	•,				365		10					
	16	>)	929.13	6.01	8.14	394		14					
	16	۰,	.17			396		26					
	20	,,	•42	6 [.] 85	8.93	430	37 385	30	·37022				
	20	"	.53]		422		33					
	23	,,	•51	7.06	8.60	361		30					
	23	,,	•23			350		22					
	27	,,	•06	6.96	8·9 8	589		16					
	27	,,	.19			394		13					

Observations of Horizontal Force at Kodaikánal Observatory.

Absolute Magnetic Observations.

Observations of Horizontal Force at Kodaikánal Observatory.

I Date.		2	3	4	5	6	7	/	8		9
		Observer.	Value of m _o .	P from 22.5 and 30 cms.	30 and	Observed Values of Horizontal Force.	me obse		Base Line values corrected for temperature.	B	onthly mean ase Line values.
190	3.		C. G. S.	C. G. S.	C. G. S.	C. G. S.	С.	G . S .	C. Ģ. S.	c	. G. S.
May.	30	С. Т.	•25	6,98	9 ∙02	374			13		
	30	,,	925.93			361			14		
June	3	E. A. M.	9 26.30	6.72	8.37	421	1		27		
	6	,,	·47	6.96		365			31		
•	10	3)	.32	6.91	8.32	389			21		
	10	فد	•08			379			18		
	13	,,	•32	6.85	8.60	408			16		
	13	,,				384			03		. 4
	17	"	.10	6.88	8.65	409	\.	37393	06		.37017
	17	"	.34			419		57555	-/.		
	20	33	•36	6.91	8.70	408			17		
	20	"	.00			394			07		
	24	,,,	•00 •06	7*09		365 368			20		
	24	"	.17	6.78	8.79	401			14		
	27 27	"	925.98		- 15	393			\$2		
• •			926.57	6 [.] 67	9.35	.37370			.37027		١
July	4		920 57		9.55	37370			27		
	4 8		.13			383			22		
	8		•42			379			21		
	8		•47	6.6	,	355			25		
	8		.03			337		.3737	7 16		3702
	11		•45	6.8	3 8.84	851			26		
	11	. ,,	.13			338			21		
	15	5 ,,	•38	6.8	0 9.21	402			20		
	15	5 ,,	·28			398			17		
	18	3 ,,	•25	6.8	3 8.88	371			19)

ŧ

Absolute Magnetic Observations.

I		2	3	4	5	6	7	8	9
Date. Ob		Observer.	Observer, Values of mail		P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed values of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line values.
1903			C. G, S.	C. G. S.	C. G. S _.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
July	18	С. Т.	.13			36 6	1	17	١
	23	,,	.30	6.64	9.21	3 95		26	
	23	**	[.] 49		•••	402		23	
	25	>2	•49	6.64	8 [.] 98	42 ⁷	37:377	28	37.022
	25	"	. 0 6	• •••	·	410		22	
	2 9	"	•23	6.78	8 [.] 74	365		22	
	29	,,	.38			371)	23	J
August	I	"	•30	6.85	8 [.] 93	400	1	27	1
	I		.32			4 01		27	
	5	")	•38	6.85	8.00	397		28	
	8	,,	.30	6.88		3 ⁸ 4		24	
	8	ور	.52			3 ^g 3		27	
	12	"	•45	6.83	7'90	407		27	
	12	,,	.53			39 8		27	
	13	,,				4 0 6		26	
	15	,,		•••		39 3	37.392	21	3702
	15	,,				4 ¹ 3		19	
	15	,	.55	6.93	8 [.] 70	36 5		24	
	15	,,	.28		•••	353		21	
	19	,,	.52	7:09	8.09	398		19	
	19,	,,,,	•23			397		15	
	29		•32	6.78	8 [.] 56	390		22	
	29 .,	,,	.12			3 ⁸ 4]]	20]]
Sept.	2	,,	•25	7.0 6		381	1	- 21	1
	2	13	•38			386		15	
	5	,,	•23	7.06	8 [.] 04	357	37.392	20	37.32
	9	,,	•49	7.01	8.51	3 ⁸ 3	IJ	23	

.

Observations of Horizontal Force at Kodaikánal Observatory.

、

Absolute Magnetic Observations.

Observations of Horizontal Force at Kodaikánal Observatory.

9	8	7	6	5	4	3	2	I
Monthly mean Base Lin value.	Base Line values corrected for temperature.	Monthly mean observed values of H. F.	Observed values of Horizontal Force.	P from 30 and 40 cms.	P from 22'5 and 30 cms.	Valu es of m _o .	Observer.	Date.
C . G. S	C . G. S.	C. G. S.	C. G. S.	C. G. S [.]	C. G. S.	C. G. S.		1903.
)	20)	380			•42	С. Т.	ep t. 9
	20		414	8.00		.12	"	12
	16		424			•42	"	I 2
	22		394	8.04	7. 06	[.] бо	,,	16
	17		3 ⁸ 5	•••		•38) , '	16
	20		435	8 [.] 56	6.88	.53	"	19
`3702 2	21	3739 ²	4 49		••••	•57	"	19
	27		361	8.60	6.7 8	•бо	"	23
i	29		347			•25	"	23
	23		412	7 . 90	6 ·78	.13	"	26
1	21		427			•49	"	26
	24		366		6 [.] 80	⁻ 47	"	30
J	25)	361			•34	"	30
)	·37022	<u>ا</u> ۱	[.] 374º3	7.76	6 [.] 98	926.31	",	ctober 1
	22		41,5	•		[.] 49	,,	I
	23		404	8 ·65	6.83	.36	,,	3
	15		408			•47	"	3
	24		400	8·9 3	6 ·67	•62	,,	7
ļ	24		389			•34	,,	7
	24	10008	424		6.91	•25	"	10
'37023	23	37388	439			•62	,,	10
	30		356	8 [.] 79	6.62	•38		14
	21		337		6.57	.32	"	17
	17		330			.12	,,	17
	30		377	8.88	6.75	·64	,,	21
	27		366			•36	"	21
)	23		399		6.88	•51	"	24

ABSOLUTE MAGNETIC OBSERVATIONS.

1	1	2	3	4	5	6	7	8	9
Dat	te. Observer.		Values of m _o .	P from 22.5 and 30 cms.	30 and	Observed values of Horizontal Force,	Monthly mean observed values of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line values.
190	3 .		C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Oct.	24	С. Т.	.17			385	ו	21	h
	28	"	•57	7.11	7:95	390	·37388	23	-37023
	28	"	·32			380	J	20	J
Nov.	4	"	. 49	6 [.] 91	7.81	314	1	30	1
	4	,,	•45			312		28	
	7	,,	•47	6.96	•••	353		25	
	7	,,	.12			340		19	
	11	,,	.12	6.88	8 [.] 60	360		16	
	11	H.N.G.	•68	7 ¹ 4	8.18	325		35	
	14	С. Т.	•34	6.93	8.32	374		21	
	14	,,,	•38			376		25	
	14	H.N.G.	•66	6.93		349		34	
	14	,,	•42			340		25	
	14	,,,	•47		9.02	338		24	
	18	С. Т.	.34	6.98		404		23	
	18	,,	.51		•••	399	'37355	5 26	.37026
	18	,,	•38		9.13	392		23	
	18	H.N.G.	· · 74	6.85	8.70	347		39	
	18	"	•60			340		29	
	21	C. T.	•25	6.91		340		21	
	21	"	•28			341		. 23	
	21	H.N.G.	70			352		36	
	21	,,,	•40			340		23	
	25	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•55			361		34	
	25	,,,	•42			356		35	
	26	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		7.09	7.76	365		26	
	28	,,	•06	6 ·9	8.00	377		18	
	28	,,	.00			374	J	18	J

Observations of Horisontal Force at Kodaikánal Observatory.

NO. 26 PARTY (MAGNETIC).

TABLE I—concld.

ABSOLUTE MAGNETIC OBSERVATIONS.

I		2	3	4	5	6	7	8	9	
Date. Obs		Observer.	Values of m _o .	P from 22.5 and 30 cms.	i 30 and	Observed values of Horizontal Force.	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line values. C. G. S.	
190	1903.		C. G. S.	C. G. S.	C. G. S	C. G. S.	C. G. S.	C. G. S.		
Dec.	2	H. N. G.	926.34			.37320)	.37013	1	
	2	,,	[.] 45			324		23		
	3		••••		8·46	346		27		
	5	, ,,	•21	7.14	9.02	329		16		
	5	,,	•04			322		14		
	9	"	•34			346		09		
	9	,,	•15			338		10		
	10	"		6.80	8.88	374		14		
	12	"	·55	7.09	9.13	384		19		
	12	"	•47	•••		381		24		
	16		•49	7.06	9.21	351	37359	18	37022	
	16	,,	•19			339		14		
	19	>>	•36	•••	8 ·28	367		17		
	19	"	•25			363		19	·	
	23	,,	. 60	6.91	8.18	374		36		
	23	,,	•40			366		32		
	26	,,	•72	.719	8.32	418		25		
	26	,,	.72			418		39		
	30	"	·64	6.80	9.30	364		26		
	30	,,	•47			357)	36]]	

Observations of Horisontal Force at Kodaikánal Observatory.

TABLE II.

ABSOLUTE MAGNETIC OBSERVATIONS.

	r 	2	3	4	5	6	7
Date.		Observer.	Magnetic Collimation.	Observed Declination, west.	Monthly mean observ- ed Decli- nation west.	Base Line values.	Monthly mean Bas Line values.
190 Mon	3. th.		, .	0 /	• •	,	
January	2	С. Т.	-2 22	o 18.8		,	•
	6	"	2 14	20'2			
	9	>1	2 7	19.7			
	19	,,	25	20'1			
	19	,,	2 14	20'0			
	19	,,	2 17	19.8			
	19	,,	2 14	1 9.7	0 19.8		
	19	, بر	2 18	19*4			
	19	"	2 14	19.4			
	23	,,	28	20 [.] 6			
	27	,,	26	20.9			
	30	"	2 5	19.2			
February	3	,,	<u>-2</u> 5	o 19 [.] 8			
	6	رو	² 4	20'I			
	10	"	2 14	21 . 1		1	
	13	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 8	20.9		1	
	17	,,	2 14	20'2	0 20.5		
	20	,,	2 10	20.7			
	24	"	2 23	21.5			
N	27	"	2 15	19.9			
larch	3	,,	-2 9	0 20.4			
	31	"	2 15	21.0	20.7		
pril	7 E	С. А. М.	—ı 59	0 21.9			
	3	"	2 I	21.9			
	10	"	2 19	20·6	20.9		
	14	"	2 12	21.0	-		
	17	,,	2 12	21.3			

•

Observations of Declination at Kodaikánal Observatory.

٩.

NO. 26 PARTY (MAGNETIC).

TABLE II—contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

б 7 Ŀ 2 4 5 3 Monthly mean Base Line Monthly Magnetic Collimation. Observed Declimean observed Decli-**B**ase Line Date. Qbserver. values. nation, west. nation, west. values. 1903. , , " 0 , 0 , , Month. April E. A. M. 18 20.8 21 •2 a ۶o 24 2**0'**9 2 5 20.2 •, 28 2 19.2 14 >* May 20'0 12 0 I -2 ,, 2 18 19.1 5 ,, 8 19.9 2 25 ,, 22.8 12 2 10 ,, ₹5 2 20 20'0 " 21.3 0 22.6 19 2 24 ,, 18 20.5 22 2 ,, 26 2 2 21.2 ,, 26 2 10 23.2 " 8 29 2 22.0 " June 2 21 22'1 2 0 19 6 22.8 5 2 ,, 9 20 **2**3.0 2 . 23.6 12 2 24 ,, 16 14 \$3.7 2 ,, 0 22.7 19 18 23.4 2 ,, 20.8 23 2 21 ,, 23 22.0 12 ,, 2 26 22 24'1 2 ,, 6 2 20.9 ,, 30 С. Т. July 3 17 0 23'4 2 21.8 7 7 2 **31** -22.6 0 10 2 1 I 20.3 ,, 31.3 14 2 21 ,,

Observations of Declination at Kodaikánal Observatory.

TABLE II—conid.

1

ABSOLUTE MAGNETIC OBSERVATIONS.

Observations of	Declination at	Kodaikánal Observatory.	
Observations of	Declination at	Nouaikanai Ooservaiory.	

I Date.		2	3			4		5	6	7
		Observer.	Magne Collima	Magnetic Collimation.		ed Decli- n, west.	mean)ecli-	Base Line values.	Monthly mean Bas Line values.
1903. Month.			,		0	,	0	,	,	,
July	17	С.Т.	-2	13	0	24 .9	۱.			
	21	,,	2	15		2 2.9				
	24	"	2	17		22.8) °	22.6		
	28	"	2	12		23.0				
•	31	• •	2	18		23.3	Į			
August	4	در	-2	7	0	23.6	h			
	7	"	2	11		23.9			100.1	
	11	۱	2	4		24° 7			100.3	
•、	14	,,	2	8		21 .2		0.017	99'5	
	18	,,	2	14		2 3.7		23.2	9 9 [.] 5	99'7
	21	"	2	12		22.7			99.8	
	25	,,	2	15		23.9			99'5	
	28	,,	2	9		2 4.3	l)		99'4	
September	I	"	-2	12	0	23.4	h		99'4	
	4	"	2	10		² 3 .3			99'5	
	8	,,	2	17		24.0			99`5	
	11	"	2	20		23 .7			99 '4	
	15	.,	2	17		22 .7		23.8	99.8	99.6
	18	,,	2	14		24.2	l (°	230	99.8	
	22	,,	2	11		² 4'3			99.5	
	25	,,	2	18		2 4 [.] 5			99.6	
	29	,,	2	5		23 .4			99.6	J
October	2	,,	-2	II	0	23.3	ĥ		99'5	
	б	,,,	2	21		24•0			99`2	
	6	3)	2	13		23 ·9	> 0	2 3 [.] 6	100.1	99.8
	9	,,,	2	17		24 · 6			99 [.] 8	
	13	, ,,	2	13		24.1	V		99.7	

1

.

•

TABLE II—concld.

ABSOLUTE MAGNETIC OBSERVATIONS.

I		2	3			4	_	5	6		7	
Date.		Observer.	Magnetic Collimation.		Observ natio	ed Decli- n, west.	Monthly mean observ- ed Decli- nation, west.		Base Line values.	me	Monthly mean Base Line values.	
1903. Month.					0	,		, ,	,		,	
October	16	С. Т.	-2	14	0	23.8)		100.0	h		
	20	,,	2	14		23.2			99.7			
	2 3	"	2	9		22 [.] 6) o	23.6	99.8	$ \rangle$	99.8	
	27	33	2	11		23.3			9 9 °7			
	30	,,	2	10		23.0	J		99.9			
November	3	"	2	16 ·	, ò	23.4			9 9 .6	1		
	6	"	2	20		23 . 9			99 [.] 6			
	10	,,	2	21		25.1			9 9` 3			
	10	H. N. G.	2	5		23.3			99 [.] 5			
	13	С. Т.	2	23		24.0			100.0			
	13	H. N. G.	2	12		23.9			ç9 [.] 6			
	17	C, T.	2	15		23 .3	0	23.7	9 9 [.] 6		99'7	
	17	H. N. G.	2	4		23.1			9 9 °7			
	20	С.Т.	2	5		23.6			99.8			
	20	H. N. G.	2	4		23 .4			5 9.8			
	24	"	2	13		2 3.6			100.0			
	27	"	2	12		23.7	/		99.7			
December	I	<i>y</i> , ∙		18	0	22 [.] 8			100'0	h		
	4	37	2	17		22.7						
	. 8	"	2	9		23.4			100.0			
	11	,1	2	17		24.5			100.1			
	15	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2	16		24'I			100 [.] 6			
	18	•,	2	6		22.6		23 [.] 6	100.0		100.3	
	22	<i>n</i>	2	25		23 [.] 4			100'2			
	22	,,,	2	8		23.7			100,1			
	25		2	14		23.8			100 .2			
	28	,,	` 2	10		24.7			100.7			
	29	. ,,	2	19		23.9			100'7			

Observations of Declination at Kodaikánal Observatory.

TABLE III.

•

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		Kodaikánal L. M. time of observation (o to 24 hours).		Observer.	Needle No.	Observed Dip.		Monthly Mean for each needle.	Monthly Mean.	R BMARKS.
1903. Montl	h.	h.	m.			•	,			
January	I	13	53	С. Т.	I	3	2.1	١		
	I	13	53	"	2		3.5			
	5	14	12	,,	I		2.2			
	5	14	12	,,	2		2.2	No. 1 3° 3'2		
	8	13	39	1,	т		3 [.] 6	3 3 2		
	8	13	39	79	2		4.7			
	12		••	",	I		3.3			
	12			"	2		2.0			
	13	•	••	,,	Т		6.9	1	3° 3⁺4	
	13		••	"	2		9.0			
	14		••	,,	2		4'4			
	14	-	••	"	I		3.3			
	26	13	44	55	Т		2.0	No. 2 3° 3'7		
	26	13	44	,,	2		1.1	3 3 7		
	29	13	44	3 7	I		1.8			
	29	13	44	"	2		2.4)	/	
Februar y	2	13	4 8	19	I	3	o.7			
	2	13	48	3 7	2		1.8			
	5	14	4	,,				No. 1		
	5	14	4	, ,	2	3	3 [.] 8	No. 1 3° 3''3		
	12	13	40	"	I		3.3			
	12	13	40	"	2		3.6		3° 3'5	
	16	43	46	,,	I		3 [.] 6	(
	16	13	46	2)	2		3.9			
	19	13	35	"	T		5.0			
	1 9	13	35	"	2		4.8	N		
	23	14	7	,,	I		5.0	No. 2 3° 3'6		
	23	14	7	"	2		4.3	J]	

•

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46 needles Nos. 1, 2 and 3c by Dover.

98

.

TABLE III-contd.

Absolute Magnetic Observations.

Date.	·	Kodai L. M. t observ (o to hou	ime of vation 24	Observer.	Needle No.	Qbse Dij	rved p.	Monthly Mean for each needle.	Monthly Mean.	Remarks.
1903. Month.		h.	m.			0	,			
February	26	13	59	С. Т.	I	3	2.3	3	}	
	26	13	59	"	2		3.1))	
March	2	13	4 ⁸	,,	I	3	1'9			
	2	13	48	,,	2		2.3	No. 1 3° 2'2		
	5	14	13	"	I		2.0	3 2 2		
	5	14	13 .	"	2		2.7		3° 2.'5	
	31	14	32	"	I		2 ·8	No. 2 3° 2'7		
	31	14	32	,,	2		3.0		ľ	
April	2	13	54	E.A.M.	2	3	2 .9	h		
	2	13	54	19	I		1.6			
	6	14	4	"	2		7.0			
	6	14	4	>>	I		4 •6	,		
	9	13	55° 5	>,	2		5'9	No. 2 $3^{\circ} 4'3$		
	9	13	55.5	"	I		3.1	3 4 3		
	12	14	3 9. 0	13	2		3.3			
	12	14	39.0	>>	I		2 .6			
	16	13	40.0	"	I		2.0		3° 3'5	
	16	13	40 °0	1)	2		3.2	17		
	2 0	13	23	33	2		3.9			
	20	13	23		I		2 °0			
	23	9	20	n	I		4.3			
	23	9	20	در	2		3*3	No. 1 3° 2'7		
	27	9	20	>9	I		3.3			•
	27	9	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2		5.3			
	30	II	40	**	2		3`4			
	30	II	40	,,	I		1.1	1	ľ	
May	4	11	47.5	"	2	3	2`4	}	}	
	4	II	47 [.] 5	,,,	I		o •9)	D D	

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos. 1, 2 and 3c by Dover.

TABLE III-contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		L. M. t obser (o to	ikánal time of vation o 24 urs).	Observer.	Needle No.	Observ Dip	veđ	Monthly Mean for each needle.	Monthly Mean.	Remarks
1903. Month.		h.	m.			0	,			
May	7	9	27	E.A.M.	I	3	0.8		n	,
	7	9	27	"	2		2· 3			
	II	13	46	"	I		2.7	No. 2 3° 3''9		
	11	13	46	"	2		3.9	3 3 9		
	14	11	4 9	"	2		2 .9			
	14	II	49	"	I		1.9			
	18	13	48	,,	I		3.8		3° 3′ 5	
	18	13	48	"	2		5.4	(3 3 5	
	21	13	36.2	"	2		4 •6			
	21	13	36.2	,,	I		3.0	No. 1 3° 3''1		
	25	. 13	44.2	"	2		3.3	3 3.1		
	25	13	44.2	,,	I		3 [.] 8			
	28	14	13	,,	2		6 [.] 3			
	28	14	13	,,	I		7 . 1	V	J	
June	I	12	19	"	2	3	2.6	K		
	I	12	19	"	I		2.2			
	4	13	41	32	2		2.6			
	4	13	4 I	,,	I		2.4			
	8	13	32))	2		4'9			
	8	13	32	,,,	I		6 [.] 0	No. 2 3° 4'2		
	8	14	58	,,	2		5 [.] 6	3° 4''2		
	8	14	58	,,	I		3.0	}	3° 4'·1	
	11	12	2	,,	τ		2° I			
•	11	12	2	,,,	2		4.3			
	15	12	17	,,	г		4'4			
	15	12	17	,,,	2		4.2			
	18	9	24		2		2.4			
	18	9	24		I		3.7	No. 1. 3° 3'9'		

Observations of Dip at Koddikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos. 1, 2 and 3c by Dover.

TABLE III—contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		L. M. obser	ikánal time of vation hrous).	Observer.	Needle No.	Obse Di	rved ip.	Monthly Mean for each needle.	Monthly Mean.	Remarks.
1903.		h.	m.			0	,			
Month. June	22	13	38	R.A.M.	2	3	4'9)		
	22	13	38	"	I	3	5.4			
	25	13	38	"	. 2	3	5.1		3° 1.4'	
	25	13	38	"	I	3	4.7	1		
	29	12	47`5	"	I	3	5.1			
	29	12	47`5	"	2	3	5.0	J	1	
July	2	8	57	"	I	3	7 :6			
	2	8	57	,,	2	3	7; 1			
	6	9	4	С. Т.	I	3	5'3			
	6	9	4		2	3	6.8	No. 1 3° 6'4'		
	9	13	48	"	I	3	5.8	3° 6.4'		,
	ġ	13	48	"	2	3	6.8			
	13	13	35	"	I	3	4'9			
	13	13	35	,,	2	3	5.8			
	17	9	27	,,	I	3	6·8	}	 ⟩ 3° 6•6′	
	17	9	27	23	2	3	6.3			
	20	8	59	,,,	I	3	7'4			•
	20	8	59	"	2`	3	6.9	}		
	23	13	50	,,	I	3	6.1	No. 2		
	2 3	13	50	"	2	3	6.2	No. 2 3° 6.8'		
	27	13	4 4	"	I	3	7 • 0			
	27	13	4 4	"	2	. 3	7.2			
	30	14	10	"	I	3	6.2			
	30	14	10	"	2	3	7 ^{.2}	J		
August	3	13	39	"	2	3	5.1	Ŋ	J J	
	3		39	"	1	3	4.2		3°. 5.8	4
	6		4 4	"	2	3	9'3			
	6	13	44	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I	3	8.1			

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos.'1, 2 and 3c by Dover.

TABLE III—contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		Kodai L. M. 1 Observ (0 to 24 1		Observer.	Needle No.	Obs I	e rved Dip.	Monthly Mean for each needle.	Monthly Mean.	Remarks.
1903. Month		h.	m.			0	,			
August	10	13	52	С. Т.	2	3	5.4	No. 2)	
	10	13	52	"	I	3	5.0	3° 6.2'		
	13	13	51	"	2	3	5.3			
	13	13	51	,,	I	3	5'3			
	17	13	40	"	2	3	6 .0			
	17	13	40	, ,,	I	3	5. 1			
	20	13	44	,,	2	3	6 [.] 6			
	20	13	4 4	"	Ţ	3	5.2	1	3° 5 ^{.8} ′	
	24	13	52	"	2	3	5.4	No. 1		
	24	13	52	"	τ	3	5 [.] 0	3° 5°5′		
	27	13	42	"	2	3	7'3			
	27	13	42	"	I	3	5.9			
	31	13	38	"	2	3	5.5			
	31	13	38	"	I	3	4 [.] 8]	
September	3	13	30	,,	2	3	7.9	1.	۱ I	
	3	13	30	"	Ŧ	3	7*4			
	· 7	13	56	"	2	3	·9·1			
	7	13	56	,,	μ	3	8.2			
	10	13	42	,,	·2	3	11.5	No. 2 3° 7 [.] 6'		
	10	13	42	"	I'	3	9.2	3° 7 [.] 6′		
	\$4	14	3	"	· 2	3	5.6			
	14	14	3	"	I	3	4.1		3° 7'2'	
•	۲7	13	24	,,	2	3	5.7			
	17	13	24	"	I	3	5.6			
	21	13	41	,,	2	3	7.2			
	21	13	41	"	I	3	7.1	No. 1 3° 6.8'		
	24	13	30	"	2	3	6 [.] 4	3 0.9		
	24	13	30	71	1	3	5.9].	J.	

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos. 1, 2 and 3c by Dover.

•

102

.

TABLE III—contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		Kodaik L. M.ti observa (0 to 24 h	me of ation	Öbserver.	Needle No.	Obse Di	rved p.	Monthly Mean for each needle.	Monthly Mean.	Remarks.
1903.		h.	m.			o	,		•	
Month. September	28	14	7	С. Т.	2	3	7`4	2	} 3° 7'2'	
	28	14	7	,,	I	3	6·3	5	$\int_{0}^{3} \frac{1}{2}$	
October	I	13	54	,,	2	3	9. I)		
	I	13	54	,,	I	3	6.2			
	5	13	44	"	2	3	6 [.] 9			
	5	13	44	,,	I	3	6.3	No. 2 3° 7 ^{.2}		
	8	13	42	,,	2	3	5.6	5 /2		
	8	13	42	"	I	3	4.6			
	12	13	45	"	2	3	6 [.] 3			
	12	13	45	"	I	3	7. I		3° 6'9'	
	15	10	46	,,	2	3	7 .4			
	15	10	46	"	I	3	6.0			
	19	13	49	"	2	3	7' 3			•
	20	9	3	"	2	3	6 ·3	No. 1 3° 6·1'		
	22	14	43	"	2	3	10. 0			
	26	13	2 6	"	2	3	6.1			
	29	13	30	"	2	3	6.1)	
	29	13	55	,,	2	3	7'3	1		
November	2	13	29	"	2	3	ð. 1		\	
	2	13	29	"	2	3	8.8			
	5	13	3 9	"	2	3	7 ' 9			
	- 5	13	39	"	2	3	7.1			
	9	13	58	,,	2	3	6.3		3° 7'9	,
	9	13	58	,,		3	5.0			
	9	14	I	H.N.G.	2	3	6.2			
	9	14	I	"	30	3	6.0			
	12	14	51	С. Т.	2	3	7.3			
	12	14	51	"	30	3	7.7	l)	l)	

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos. 1, 2 and 3c by Dover.

TABLE III—contd.

Absolute Magnetic Observations.

Date.		Kodai L. M. t observ (oto24 l	ime of a tion	Observer.	Needle No.	Obs [erved Jip.	Monthly Mean for each needle.	Monthly Mean.	Remarks.
1903.		h.	m.			0	,			
Month. November	12	14	3	H.N.G.	2	3	9.4)		
	12	14	3	"	30	3	7.2			
	16	14	2	"	2	3	8.9			
	16	14	2	,,	30	3	7.6			
	16	14	49	С. Т.	2	3	10,1			
	16	14	49	,,	30	3	8 .6	No. 2 3° 8·2'		
	19	12	45	,,	2	3	7.7			
	19	12	45	"	30	3	7.3			
	19	13	4 5	H.N.G.	2	3	7.8	}		
	19	13	45	,,	30	3	7.7		3° 7'9'	
	23	9	10	С. Т.	2`	3	9 .6			
	23	9	10	"	30	3	8.7			
	23	14	9	H.N.G.	2	3	8.9	No. 30		
	23	14	9	· ,,	3c	3	8.0	3° 7.5′		
	26	13	46	,,	2	3	7 .2			
	26	ľ3	46	,,	30	3	7 [.] 4			
	30	13	49	,,	2	3	8·3			
	30	13	4 9	"	30	3	7.7	J)	
December	3	13	47	"	2	3	10'4			
	3	13	47	"	3¢	3	11.0			
	7	13	4 6	"	2	3	7.8			
	7	13	46	,,	30	3	7.9			
	10	13	52	"	2	3	6.3	No. 2	3° 8.6'	
	10	13	52	"	3c	3	6.3	$\begin{array}{c} \text{No. 2} \\ 3^{\circ} & 8.7' \end{array}$		
	14	14	I	"	C	3	ð. 1			
	14	15	26	"	2	3	9'5			
	17	13	51	"	2	3	7.4			
	17	13	51	,,	30	3	6 ·6	J)	

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos. 1, 2 and 3c by Dover.

TABLE III-concld.

Absolute Magnetic Observations.

Date.		Kodail L. M. t Obser (0t024 l	ime of vacion	5	Needle No.	Obs D	erved ip.	Monthly Mean for each needle.	Monthly Mean.	Remarks.
2 2 3 2 3	1 1 4 4 8 8 8 1 1	h. 13 13 13 13 13 13 13 13	m. 55 55 49 49 40 40 30 30	H.M.G. ,, ,, ,, ,, ,, ,,		。 3 3 3 3 3 3 3 3 3 3	, 7.7 8.0 9.8 8.8 8.8 8.9 8.9 10.2 10.2	No. 3c 3° 8.6'	}3° 8.6′	

Observations of Dip at Kodaikánal Observatory taken with Barrow's Dip Circle No. 46, needles Nos. 1, 2 and 3c by Dover.

P

TABLE IV.

Dates of magnetic disturbances at Kodaikánal Observatory in 1903.

Latitude = $10^{\circ} - 13' - 50''$.

Longitude=77°-27'-46". MONTHS, . 190<u>9</u>. Dec. Date. Feb. March April. May. June. July. August. Sept. Oct. Nov. Jan. S S S S S S S G I С ć S С . С Μ S S S S М (C) S (C) S 2 С S С (C) (C) (C) S С (C) (S) S ... 3 . S S (C) S S S S Μ S С (C) S 4 • . . S S Μ S C S S S S S S S 5 . С s S 6 G Μ S Ś S ? S (C) 6 С . (C) S S (C) (C) (C) S S • С S (C) 7 (C) • Ś Μ S S С С S S S S S 8 С • . Ś s S S С s (C) S С М 9 S ••• • • S S., S S С S (C) S S (C) 10 S • . S С S S М S S s С (C) S S 11 . . . S С С S S С S S (C) Μ 12 (C) **.**.. S S С S S М (C) (C) G С Μ 13 . . . ••• S S S S С S С S С (C) Μ 14 . . . ••• S S (C) S s (**C**) S S (C) С С 15 • • • • • С S С (C) C 16 S С (C) S (C) (C) (C) • . . S С S S С s S Μ (C) S С 17 . • . ••• S S С S (C) (C) S (C) S S С 18 S • S S S S С S S (C) Μ S S С 19 . . • (C) S S S S Μ С (C) (C) S С S 20 . • . S S S S S S С (C) S S S 21 (C) • S С S С S (C) 22 С S М S S (C) • . С S С s S С S S S (C) S С 23 . • . (C) С S S (C) S S S S С С 24 S . • S С С s С S С С (C) S (C) С 25 • • (C) S С S С С М S 26 М С S м . . . (C) (C) S (C) (C) S S S S С С 27 М • С S S С S 28 С (C) S S С S . (C) • S (C) С М S (C) М S С S С 20 . . ••• . S S S S S (C) S S Μ S 30 ••• M S S S С С VG 31 Μ ••• ••• ... ••• C. 13 12 12 11 11 10 13 9 9 8 10 17 S. 18 17 19 18 12 15 15 15 17 19 8 19 ٠ • M 1 I I 2 I 3 • 3 3 3 1 . • • • ••• G. ••• ••• ... 1 ••• I I ••• ••• V. G. 1 ... ••• ... ••• ••• •••

Note -C=calm. S=slight, M=mcderate, G=great. V.G.=very great. Bracketted days are the quiet days selected by the Director Colába,|Observatory.

106

l

TABLE V.

Digitized by Google

					5	10472	Diztral incyaality of the 11071807141 Force at 1104414444 as acauced from 1 able	auty .	2010	11077	1111100	1.0700	17 10	oaaska	<i>nat a</i>	aeau	11 123	m 1 a	016 V.							
Hours.	'S 1	Mid.				3	•	S	•	7	ø	0	<u>0</u>		Noon.	1		ы	4	s م	8	7	8	0	2	=
											•	Winter.	ter.													
Months.	ths.	*	* *		~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	۲	~	~	~	~	~	~	~	~	~	~	~	~	~	~	*	~	*	*
January	•	. <u> </u>	3 -13		 	 	 	 	Î	-15	+3+	+15 -	+30	+34	+33	+ 27	+15	+6	ī	-1	ĩ	ĥ	II-	01	-10	21
February	•	17	7 -18		-10	-10	-15 -	- 10	-14	ĩ	+ + +	+ 23 -	+40	+51 -	+49	+34	+14	ī+	-S	″	2 1	5	-13	1	-15	-15
March .	•		3 -24		-33 -	-33	-23	-22		-18	Ŷ	+31	+62	+ 29 +	+ 74 -	+53	+ 29	+5			-10	-18	-30	12	-31	-22
October	•		1 -21		1	-18	-18	- 11-	-30	91-	+ 6+	+ 38	+57 -	+ 65 +	+ 53	+31	+2	ا د	ő		Ę	- 4-	11	-16	-15	- I6
November	•	22	2 -19			-18	-16 -		14	4	+ 12 +	+42	+59 -	+20+	+30 -	+23	+6	ī	-3	7	ĩ	-14	-18	17	-31	-22
December	•	1 4	4 -15	_	-13	-13	-12	-12		Ť	+ + + +	+ 12 +	+ 25	+ 30 +	+ 29	+28	+20	6+	°+	Î Î	Ŷ.	î	01 	ñ	ĩ	112
Means .	•	61-	61-		- 18	- 12 -	-10	-10	- 10	01	'	+ 22 +	+45	+52 +	+45	+33	+15	 7 +	12	۰ ۳	<u> </u>	-13	-15	<u>0</u> 1	-10	11
												Summer.	<u>بة</u>													
April .	•	22	5 -25		-33	23	-31	-33	-34	-30	+ + +	+ 44 +	+ 77	+ 16+	+81	+ 20	+13	- 10	- 38		-10 -10	-10	- 18	- 18	-20	٥ ۱
May .	•	20	-30		-20	-20	-31	-33	- 61-	-15	+ 9+	+32	+54	+ 00 +	+ 62	+47	+23	1	-15 -	-30	81	-12-	18	-18	-17	L1 –
June .	•	-15	5 -15		14		13	-14	- 6	 ۱	+12 +	+38 +	+55	+ 59 +	+40 +	+ 33		- 13	- 1 1	61	÷15	-10	91-	-17	-18	8
July .	•	-14	4 -13		-13	-13	-14	- 11 -	-13	4	+ 01+	+34 +	+48 -	+53 +	+ 42	+28	==+		-15 -	- <i>1</i> 0	- IQ	4	-15	-13	-13	
August .	•	-30	-31		-30	- 10	- I - I - I	-12 -	-14	+	+ 11+	+32 +	+ 45	+ 42 +	+43	+31 -	+17	+5	- <u>-</u> -	-13	-13	-14	-15	-15	-13	Ē
No September .	•	- 20	61 -		-20	 []	 8 		I8	Ť	+20 +	+ 53 +	+14 -	+ 74 +	+47 +	+14		- 23 -	- 12	-13	ĩ	-13	-16	-16	-15	-16
Means .	•	61	61- 6		- 18	-18	- 11-	-18	-10	6	+ 13	+39 +	+59 -	+ 65 +	+34	+32	6 +	80	-10	-18	-14	-15	-16	10	10	— IS

Dizrnal incouality of the Horisontal Force at Kodaikdnal as deduced from Table V.

TABLE VI.

108

NO. 26 PARTY (MAGNETIC).

Digitized by Google

NoTE.-When the sign is + the reading is above the mean. For January, means are taken from four quiet days.

Hourly means of the Declination as determined at Kodaikánal from the selected quiet days in 1903.

.

TABLE VII.

-

Hours.	ส์	Mid	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*	ŝ	6	7	ø	0	9	=	Noon		a	6	-	2		7	80		<u> </u>		M cans.
	West o°+	+.0											Winter.	ter.												
Months, 1903.	1903.																									
January	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	i	:	:	:	:	:	:
February	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
March	•	:	:	:	:	:	:	:	:	3	:	:	i	:	:	:	:	:	:	:	:	:	:	:	:	:
October	• •	23.2	23.4	23.4	23.2	33.2	3 .6	23.2	53.0	9.22.	22.7	23.7	24.5	24.2	24.3	23.7	33.5	33.0	23.4	23.2	3.2	53.6	53.0	23.6	33.6	23.2
November	•	5 3.6	23.2	23.6	23.6	23.9	1.42	24'3	24.3	23.8	3.2	23.4	23.8	23.2	23.3	23.2	33.1	53.1	23.3	23.2	23.4	23.4	5.2.2	23.6	3.6	23.0
December	•	24.3	1.72	24.2	24.2	24.2	24.6	24.7	32.0	54.6	24.5	24.4	24.6	24.8	34.4	53.9		54.0	54.0	54.5	24.1	24.1	34.3	24'3	24.3	24.4
										ļ		i 			Ì	-]		<u> </u>	 		<u> </u>		İ	
													Su	Summer.												
April ,	•	:	:	:	:	:	:	:	:	:			:	:	:	:							:		:	:
May .	•	:	:	:	:	:	:	:	:	÷	:	:	:	:	:	:	:	:	:		:	:	:	:	:	:
June .	•	:	:	÷	:	:	:	:	:	:	i	:	:	:	:	:	:	:	:	 :	:	:	:	:	:	:
July .	•	:	:	:	÷	:	:	:	:	:	!	:	:	:	:	:	:	:	:	 :	:	:	:	:	:	:
Avgust .	•	23.6	23.2	5.28	32.4	22.4	23,2	21.4	5.02	5.02	1.12	22.3	23.3	3.1	23.7	1.22	22.5	21.8 2	21.8	5.1 5	22.2	22.8 2	5.0 5	32.9	22.8	22.4
September	•	1.82	23.0	6.82	22.8	1.22	53.6	L.12	6.05	51.4	22.4	23.5	24.9	25.4	52.0	24 1	23.0	22.4 2	22.4	22.8 2	33.0	23.2	23.5	3.3	23.2	33 .0
										<u> </u>	<u> </u>	<u> </u>						<u> </u> 	<u> </u> 	_		<u> </u> 	<u> </u> .	<u> </u> 		

· 109

NOTE-Mean for August taken from 4 quiet days only.

		I	ĺ
		l	
		1	
le VII.			
6			
Tab			
Ы			
1410			
*			
ed		1	
nc			
tea			
22		ļ	
12			
aikána			
ike			
da	•		
K		ł	
at	•		
no		I	
ati	•		
lin			
leci		l	
Q		I	
the		l	
5			
Ð.		l	
zli			ŀ
dui			
ne			
1 12			
rne			
in			
9			

Hours.	2 <u>0</u> ,		Mid.	-	8	3	*	N	v		~~~~	o	0	:	Noon.			•5	4	 0	6	7	8	0	0	11
-								-				Wi	Winter													
Months, 1903.	, 1903.																									
January	•	•.	:	:	:	:	:	:	:	:	:	•	:	:	:	.:	:	:	:	:	;	:	:	:	:	:
February	•	•	;	:	ľ	:	:	:	:	:		:	•	•	:	•	•	:	:	:	:	:	:	:	:	:
March .	•	٠	:	:	_ :		:		:		:	•	•	- :	· :		:	I	:	:	:	:	•	:	- :	:
October	•	•	0.0	Ī	Ī	0.0	00	1.0 +	.0.3 •	10	~	, w	+0.5	· 0.1 +	+1.3	8.0+	0+	1 .0 	- 0.5	1.0	0.0	0.0	+	- +	1.0+	1.0+
November	•	•		I.0 0.0	0 .0		+03	0.0 +03 +0.2 +0.2 +0.2	4.0+		+0.5	ī	0.7	+0.3	-		- - - -	- <u>s.o-</u>	0.50 . 3		i	.0		Î	0.0	0.0
December	•	•	0 1	£.0-	9.0+ E.0+ 1.0+ 2.0- 2.0- 2.0- 2.0-	-0.3	1.0+	z .0+	£.0+		+0.2	1.0+	0.0	z. 0+	* .0+	0.0		-0.5	0.40.4		ŝ		. .0-		I. 	ī
								1		1			Cumor 1		1			· .	1				1			1
														-	-	-										
April .	•	•	:	•:	i	:	:	:	:	:	:	:	:	:	:	:	:	:	i	:	:	:	:	:	:	:
May .	•	٠	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	:	:	:	:
June .	•	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	;	:	:	:
July .	•	•	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	-	i	:	:	÷
August .	•	•	z. 0+	10+	1.0+	0.0	0.0	 	1	6.1	6.1-		1.0	6.0+	+ 1.3	+1.3	+ 0.0+	- 1.0+	-00-	- 0.0 -	-0.3	+0.3	+ 0.4	- 5.0+	5.o+	+ 0.4
September	•	•	I.0+		1.0 0.0	2.0 -		-0.3 -0.4 -1.3	I-I	-3.1		9 1	S.0+	0.2+ 7.2+ 6.1+ 5.0+	+3.4		1.1+	9.0- 0.0	- 9.0-	9.0 -	-0.5	z .0 + 0.0		+0.3	£ .0+	z .0+

NoTI-When the sign is-the magnet points to the cast of mean position and when the sign is + the magnet points to the west of mean position.

1

TABLE VIII.

1903.	
я.	
Records	
Magnetograph	
of	
Loss	
5	•
Statement	

Kodaikánal Observatory.

		Cause of Incertuption.		Adjusted the instrument. """"""""""""""""""""""""""""""""""""	
	Duration	OI DICEAK.	h. n.	²¹ ²¹ ²⁰	201 56
TOGRAPH.		ио	date	13th January . 13th ",	TOTAL .
ON MAGNE	F BREAK	to	h. m.	11 0 15 45 19 40 10 40 10 28 10 28 10 28 10 19	
DECLINATION MAGNETOGRAPH.	PERIOD OF BRBAK	ų	date	 12th January . 13th ", " 14th ", " 7th February opth ", " 7th March ", " 3rd April : 3rd April : 12th ", " 4th December 17th ", " 	
		from	ų.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Duration	of break.	h. m.	29 5 0 55 6 28 24 6 1 10 1 10	77 53
HORIZONTAL FORCE MAGNETOGRAPH.		5	date	15th January . 17th " . 3rd April . 12th May . 2nd October . 31st " .	TOTAL .
FORCE M/	PERIOD OF BREAK	3	E E	15 14 12 12 12 12 20 20 20 30 20 30	
HORIZONTAL	PERIOD	Б	date	14th January . 17th ,, 3rd April . 2th May 2nd October . 31st ,, .	
		from	É Æ	10 20 13 15 13 46 13 46 13 30 19 20	

NO. 26 PARTY (MAGNETIC).

111

BARRACKPORE MAGNETIC OBSERVATORY.

1. During 1904 the instruments have given no trouble and the chief General remarks. General remarks. Unhealthiness of the locality. Early in the unhealthiness of the locality. Early in the place was taken temporarily by one of the field observers who was working in the neighbourhood, until the spare observer, who was also ill at the time, became available on his return from sick leave.

The recorder and menials of the staff have also suffered much from malaria and constant changes have been necessary in consequence. There seems little prospect of improvement in this respect and the best remedy seems to lie in the transfer of men to healthier observatories as soon as their health shows signs of suffering at Barrackpore.

The usual tables of results for the last 5 months of the year 1903 are appended.

The declination observations.

	Month	ns.			Magnetic Collimation.				
					/ <i>W</i>				
August	•	•	•	•	— 7 38				
September	•	•	٠	•	- 7 37				
October	•	•	•	•	—7 36				
November	•	•	•	•	— 7 34				
December	•	•	•	•	-7 34				

The Dip results.

3. Needles 1 and 2 have been used in Circle No. 45 without change.

2. Mean magnetic collimation of

magnet No. 20 during 1903:---

Monthly mean differences between Needles 1 and 2 of Circle No. 45, 1903.

	Month	15.		Needle 1—Needle 2.	
August .	•	•	•	•	+ 0.3
September	·	•	•	•	+ 0'5
October	•	•	·	•	+0.2
November	,	•	•		—1. 3
December	•	•	•	•	-0.3

112

The force obs	ervations.		4. Monthly mean values of constants of Magnetometer No. 20 at Barrackpore 1903.						
Month.	M _o .	P from 22.5 and 30 cms.	P from 30 and 40 cms.	Remarks.					
August	952.29	6.89	7.92	The values of m _o are computed from the mean P (at 22.5 and					
September .	952 .53	6.79	7.00	30 cms) for the year.					
October	95 ^{2·5} 3	6.92	7 *15	·					
November	9 5 2.75	6.78	7' 55						
December	952.77	6.80	7.60	•					

The variations in the value of P from 30 and 40 cms are unusually large but in other respects the results are normally good.

MEAN MONTHLY BASE LINE VALUES AND TEMPERATURES AT BARRACKPORE OBSERVATORY.

Months.	Temperature of H. F. Instrument cent.	Scale value of o'o4 inch.	Base Line value C. G. S.	Remarks.
	0	γ		
August	31.64	4`79	0.36994	The base line values are refer-
September .	31.36	4.82	66	red to a temperature of 31° cent, the temperature co- efficient used in the reduction
October	31.04	4 ^{.8} 4	49	being + 1° cent. = $-12^{\circ}6\gamma$.
November	30.32	4 ^{.8} 3	46	
December	29.12	4.85	38	

H.F. magnetograph No. 3 by Professor W. Watson, F.R.S., 1903.

There was considerable difficulty in maintaining uniformity of temperature in the magnetograph room, and the ventilation lamp had to be fully turned up in order to prevent too large a drop during the cold weather months. Accidenta variations during the day were larger than they should be owing to inequalities in the burning of the lamps. These difficulties continued throughout 1904 and it has now been decided to double the walls of the inner room by fixing planks to the outside of the frame work which supports the present wall and filling the space between them with sawdust. In addition, the open verandah round the building will be enclosed and these two measures will, it is hoped, largely reduce the radation less and improve the temperature conditions.

The mean Base Line values show that the instrument was in a very unstable condition at first, and had not settled down entirely by the end of the year. During August and September the changes were so rapid that. separate values of the Base Line were used for each of the selected quiet days.

Q

TABLE I.

Absolute Magnetic Observations.

I	2	3	4	5	б	7 .	8	9
Date.	Observer.	Values of m _o .	P from	P from	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
1903		C. G. S.	C. G. S.	S. C. G. S. C. G. S. C. C		C. G. S.	C. G. S.	C. G. S.
August 9	K. N. M.	952•62	6•88	6 [.] 97	.37225	,		ŗ
9	, »	•60			224		019	
12	**	953.10	6.83	^{8•} 37	2 2 6		006	
12	2)	952.69		•••	210		' 3699 5	
15	"	•40	6.78	8 [.] 00	210		993	
15	"	•45			218		999	
19	,,	•••	6 [.] 72	8 .00				
• 19	,,			•••	245	` 37213	•37009	* 36994
19	"			•••				
20	,,	•36	6.88	8 ∙98	150		·36974	
27	"	· 7 3	6 [.] 91	7:20	193		970	
27	,,	.73		•••	193		970	
29	33	[.] 64	6 [.] 91	7.67	225		987	
29))	·66			225]	988	J
Sep. 2	¥ ~	•69	6.64	7 · 62	241	h	987	r.
2	• "	•60	••••		237		984	
5	,,	·66	6 ·88	7 ` 5 ⁸	231		979	
5	>>	•58		•••	227		977	
9	"	•47	6.88	7 ^{.86}	211		958	
10	",	•60	6·98	8 [.] 56	226		962	
10	23	*5 5			225	37217	964	-36966
12	"	•5 5	6 64	7 [.] 95	216		964	
12	>>	·47	•••		213		964	•
15	"	• 6 6	6 [.] 88	8.14	218		970	
15	ور	. '51	•••		212		965	
16	» •	•62	6·70	7'95	216		96 5	
16	,,	.19	•••		198	J	947	J

Observations of Horizontal Force at Barrackpore Observatory.

TABLE 1-contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

I.	2	3	4	5	6	7	8	9
Date.	Observer.	Values of m _o .	P from 22'5 and 30 cms.	P from 30 and 40 cms.	Observed values of Horizontal Force.	Monthly mean observed value of H.F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
1903.		C. G. S.	C. G. S.	C . G. S .	C. G. S.	C. G. S.	C. G. S.	C. G. S.
Sep. 19	K. N. M.	.21	6.83	8.42	181)	967)
30	93	•53	6.72	6 [.] 92	202	} ^{.37217}	95 5	} ·36966
O ctober 3	3 3	•55	6.85	7.62	211	j	957、	j
3	,)	.27			200		949	
7	"	·47	6.72	8·56	216		952	
7	33	.23			219		954	
8	57	•••		6 [.] 97	204		951	
10	,,	•60	6.96	7'15	264		957	
10	,,	·29			252		949	
14	>3	.69	6.85	7.12	174		<u> </u>	
14	• • • • • •	•62			171	37208	948	· 36949
17	"	•40	6.85	7.12	180		938	
17	"				188		945	Y
21	,,	•60	6.93	6 [.] 92	214		943	
21	"	.23		´	212		946	
24	"	952 64	6.57	7 .76	·37212		•36954	
24	,,	•40			202		947	
28	. 35	•69	6.67	7:90	210		952	
28	"	•60	•••		207	j	950	J
Nov. 1		.75	6-85	7.44	თნე	h	953	ŕ
1	,,,	•80		•••	071		949	
4		•86	6.64	7.53	160	i i	958	
6		953'04	6- 88	6.92	. 184		955	
6		952.55			166	} ∙37164	945	\ } [.] 36946
7	"	• •84	6.80	7:48	184		945	
7	"	•62			176		941	
11	"	953'10	6.01	7 .67	165		954	

Observations of Horizontal Force at Barrackpore Observatory.

Q 2

TABLE I-concld.

ABSOLUTE MAGNETIC OBSERVATIONS.

I	2	3	4	5	6	7	8	9
Date.		Values of m _o .	P from	P from	Observed values of Horizontal Force.	Monthly mean observed value of H. F.	Base Line values corrected for temperature.	Monthly mean Base Line value.
1903.		C. G. S. C. G. S. C .			C. G. S.	C. Ģ. S.	C. G. S.	C. G. S.
Nov. 11	K.N.M.	952.69			148	Ŋ	937	7
25	.,	•75	6.75	7 .95	198		943	
25	"	•66		•••	195	37164	946	} ·36946
28	,,	•51	6.64	7.86	211		940	
28	"	.31		•••	203	J	934	J
Dec. 2	9	•82	6.22	8.42	180	ר	946	h
2	3)	•55	•••	•••	170		941	
2	,,	•53		8•0 0	171		947	
5	2)	·88	6.83	7.81	198		938	
5))	•73			192		9 40	
· 9	"	.95	6 [.] 78	6.87	201		94 3	
9	,,	•58			187		933	
9	,,,	·71	6•78	7.72	181		93 0	
9	"	.73			182		932	
12))	·80	6.85	7.01	201	37196	936	·36938
12		.55		· · ·	191		926	
19))	•93	6· ₇ 8	7.62	219		941	
- 5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·84		••••	215		939	
23	,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	953.26	6.85	7.67	218		951	
-3	, n))	952.86			202		938	
-3 30	,,,	953°04	6.88	8.23	187		935	
30		95 2 .55			168		931	
30 26	••	•88	6.88	6.69	234		-933	
2 0	"	•86			2 33]	936	J

Observations of Horizontal Force at Barrackpore Observatory.

TABLE II.

Absolute Magnetic Observations.

I		2	3			4	5	6	7
Date.		Observer.	Magneti mati	c Colli- ion.	Observe natior	ed Decli- 1, East-	Monthly mean obser- ved Declina- tion, East.	Base Line values.	Monthly mean Base Line Values.
1903.			,		0	,	0 /	,	•
August	10	K. N. M.	-7	4 l	г	2 4.3		16.2	h
	14	"	· 7	36	г	27.1		1 5 · 8	
	15	"	←7	52	1	25.1		19.1	
	18	,,,	7	32	I	27.8		19.1	
	18	,,	-7	37	I	27 •6		15.2	
	21	"	-7	23	T	26 .7	1 25.7	15.8	10.0
	2 I	,,	-7	54	Ĩ	27°I		16.3	
	25	,,	-7	34	г	24'4		15.2	
	25	, ,	-7	31	I	23.3		10.0	
	25	. "	-7	33	I	2 4'I		10.0	
	27	"	-7	45	I	24.7	1	15.8	P
September	I	,,	-7	34	I	23.9		15.7	L
	4	,,	7	40	1	24' 3		15.8	Λ
	8	"	-7	27	I	24.2		19.1	
	8	,))	-7	52	I	25.5	1 24.7	16.3	
	11	ور	-7	33	I	26.9		15.6	15'9
	15	"	-7	23	I	24'1		15.8	
	15	,,	-7	48	I	24.7		15.9	
	18	"	-7	38	I	2 3 '7	1	15.9	/
October	2	"	-7	43	I	26.3	h	15.9	4
	6	33	-7	38	I	26 .1		. 15.4	
	9	,,	-7	36	I	26.3		16.0	
	13	")	-7	36	I	2 4'2	1 26'1	16.0	15.8
	16	,,	-7	28	I	26.3	1 26'1	15.9	
	16		-7	38	1	26 ·6		15.9	
	20		-7	. 29	l I	26.5		15.9	
	20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-7	37	I	26 ·7	V	16.3	

Observations of Declination at Barrackpore Observatory.

117

.

TABLE II. - contd.

Absolute Magnetic Observations.

I		2	3	;		4	5	6	7
Date		Observer.	Magneti mat	Magnetic Colli- mation.		ed Decli- n, East.	Monthly mean obser- ved Declina- tion, East.	Base Line values.	Monthly mean Base Line Values.
· 1903.			,		0	,	°0 /	,	•
October	23	K. N. M.	-7	38	τ	26.0	J	¹ 5 [.] 7	h
	27	,,	-7	45	I	26 ·2	- 15.8	15.6	15.8
	30	"	-7	32	I	25.4	ļ	15.2	J
November	3	,,	-7	30	I	2 6'0		15.9	
	3	"	-7	42	I	2 6·6		15.8	
	6	۶۶	-7	33	I	25 •4		1 5.7	
	10	"	-7	40	I	2 7.0	1 25.8	15.8	15.6
	24	,,	- 7	33	I	25.0		15.4	
	27	,,	-7	24	I	25.1		15.3	
	27	"	-7	35	1	25.3) .	1 5.2	1
December	I	"	-7	38	I	25.9		15.9	ł
	1	33	7	32	I	3 Q.1		15.8	
	4	"	- 7	4 I	I	25.7		¹ 5°7	
	8	44	-7	47	I	26.1		152	
	8	>>	-7	41	1	26.0		15.4	
	11	"	7	23	I	23.2		15.3	
	11	"	-7	23	I	24.1		15.2	
	15	12	7	30	I	25.2	I 25'4	15.3	15.4
	15	"	-7	34	I	25.2	·	15.2	
	18	>>	-7	38	I	25.5		¹ 5'4	
	18	"	7	29	I	25.3		15.2	
	22	"	-7	31	1	26.3	1	<u> </u>	
	25	"	7	36	Ţ	25.4		15.3	
	29	».	7	22	Ţ	25.2		15.2	
	29	ec (7	.49	Į	25.2	/	15.2	ľ

Observations of Declination at Barrackpore Observatory.

TABLE III.

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		Barrad L. M. of obse (oto hou	24	Obser- ver.	Needle No.	Observed Dip.	Monthly mean for each needle.	Monthly mean.	Remarks.
1903. Month. August	17	h. 17	m. 16	K. N.	I	° ' 30 18.7		.0 /	
0	17	17	16	M. "	2	30 17.1			
	2 0	14	41	33	I	30 16·9	No 1		
	20	14	41	.,, ·	2	30 15.8	30° 16'•8		
	2 4	14	5 1	.,	I	30 16.7			
	24	14	51	39	2	30 16·3	1	30°16' 6	
	28	14	34	,,	· 1	30 15.3			
	28	14	34	3)	I	30 17.6			
	28	15	37	,,	2	30 16 .3	N		
	31	14	30	,,	2	30 16.7	No. 2 30° 16'*5		
	31	14	30	"	I	30 15.7)		•
September	3				г	30 16.1			
September	3 3	14 14	39 39	,,	2	30 18.2		•	
	3	15	39 28))	2	30 16.7	No. 1		-
	3 7	13	20	,,,		30 16.5	30° 16' 9		
	7	-3	. - 2	22	2	30 14.7			۰ ج
	10	12	57	••	I	30 17.4			
	10	12	57	, ss , ss	2	30 17.2	}	30°16'.7	
	14	13	59		I	30 16.5			
	14	13	59		2	30 16.4			
	17	13	2		I	30 18 [.] 0			
	17	13	. 2),	2	30 15 .1	No. 2 30° 16' 4		
	17	13	52	22	I	30 17.0	J		
							,		
October	I	13	30	•,	I	30 17.9	1		
	1	13	30	,,	2	30 16.3			
	5	13	7	>>	I	30 18.5	17		4
	5	13	7	"	2	30 16.6	No		
	8	12	55	"	I	30 17.8	No. 1 17'1		

Observations of Dip at Barrackpore Observatory taken with Barrow's Dip Circle No. 45, needles Nos. 1 and 2 by Dover.

TABLE III—contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

·				43, "					ı	
Date.		Barrac L. M. of obser (o to hour	time rvation 24	Obser- ver.	Needle No.	Observe Dip.	ed	Monthly mean for each needle.	Monthly mean.	Remarks.
1903.		h. •	m.			0	,		o /	
Month. October	8	12	55	K.N.	2	30 1	4'4)		
	* 8	13	44	M. ,,	2	30 1	8.3			
	12	13	18	,,	I	30 I.	4'9			
	12	13	18	.,	2	30 1.	4'7			
	15	13	11	,,	I	30 1	8.3			
	15	13	11	,,	2	30 I.	5'9			
	19	. 13	II	,,	I	30 1	6 [.] 5			
	19	13	II	33	2	30 1	б'4	\rangle	30°16′•8	
	22	12	59	"	I	30 1	6.6			
	22	12	59	17	2	30 1	<u>б</u> .о	No. 2		
	26	13	17	21	I	30 I	7.3	30° 16'.6		
	26	13	17	رر	2	30 2				
	26•	13	59	"	2	30 1	•			
	29	13	24	"	I	30 1	6 . 0			
	29	13	24	33	2	30 1	2.1	1		
Novemb e r	2	13	26	,,	I	30 1	9.2			
	2	13	26	27	2	30 20	0'5			
	5	13	6))	I	30 1	7.1			
	5	13	6	,,	2	30 20	0'2	No. 1 30° 17''9		
	6	12	39	,,	2	30 1	6.9			
	9	13	26	,,	2	30 1	8∙8			
	9	14	14	"	I	30 1	8· 6		30°18′•6	
	23	13	2	"	1	30 1	5'9			
	23	13	2	در	2	30 1	8.2	No. 2		
	26	13	40	,,	2	30 20	o .7	30° 19' 2		
	26	13	40	"	I	30 1	9.3			
	30	13	8	"	I	30 I	7.3			
	30	13	8))	2	30 19	9 .0	J		

Observations of Dip at Barrackpore Observatory taken with Barrows Dip Circle No. 45, needles Nos. 1 and 2 by Dover.

TABLE III-contd.

ABSOLUTE MAGNETIC OBSERVATIONS.

Date.		Barrackpore L. M. time of observation (o to 24 hours.)		L. M. time of observation (o to 24		L. M. time of observation (o to 24		Obser- ver.	Needle No.	Obs≏ Di	rved p.	Monthly mean for each needle.	Monthly mean.	Remarks.
1903. Month.		h.	m.			0	,		o 🔸					
December	3	13	30	K.N.M	I	30	17.2	h		3				
	3	13	30	"	2	30	19.7							
	4	13	5	"	I	30	17.8							
	4	13	5	,,	2	3 0	18.2							
•	7	13	8	,,	г	30	18.3	No. I						
	7	13	8	"	2	30	16.7	30° 19'.4						
	10	13	22	"	I	30	15.4							
	10	13	22	,,	2	30	16. 5							
	11	13	13	,,	I	30	20 .2							
	11	13	13	,,	2	30	20 ° I							
							- 0.0	Ĺ						
	12	15	5	"	I		18.8							
	12	15	5	"	2	30	19.3							
	13	13	44	"	1		17.1							
	13	13	44	"	2	•	20'1							
	14	12	56	,,	I.		21'1							
	14	12	56	"	2	30	22.3							
	15	12	35	"	I	30								
	15	12	35	"	2		20' 0							
	17	13	37	,,	I	30	18.4	No. 2	30°19'.6					
	17	13	37	,,	2	1	10.1	30° 19''7						
	21	13	25	"	I	30	21'2							
	21	13	25	"	2	30	20.0							
	24	13	19	,,	1	30	19.0			•				
	24	13	19	"	2	30	18.4							
	28	13	25	"	I	30	20.7							
•	28	13	25	"	2	30	21.8							
	31	13	1 7	,,	I	30	24.5							
	31	13	17	,,	2	30	24.1	U.						

.

Observations of Dip at Barrackpore Observatory taken with Barrow's Dip Circle No. 45, needles Nos. 1 and 2 by Dover.

I 2 I

TABLE IV.

Dates of Magnetic Disturbances at Barrackport Observatory in 1903.

Lat.—22-16-29. Long.—88-21-39.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	gust. September. 	october. ກາບົກການກາບົກກ⊻ບາບົບກາ :ບິບາບົກການບບກາຽ	November. GMSSSSS()SSSSSC()CC()SSMCSSSC()CCCSSSSC()CCCCSSSSC()CCCCCSSSC()CCCCCCCC	December. SS(C) MSSSC(C) CCCMMC(C) CCCSSC(C) CCCSSC(C) MM		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		აატააიატაანა დეაათატიანი	ຩ ຆ ຘຘຘຘຬ()ຘຘຘຘຘຬ()ຬຬ()ຬ ຘຘ ຘຬຌ	SS()MRSSSC()CCMMC()CCCS		
1	M S C C (C) S S C C (C) S S C C M C S C	ຽ ເ)ິສສສເບເສສຮີ ເ	•••••	ӽҀ҇ҫҫҫӽҫҀ҄ҫӂӂ		
'h	10 10	9 /		17		
	8 16	18	16	9	,	
	3 4	I	: 2	5		
	•••	I	t I			
VG			r. 			

123

196

196

209

208

	Mean.	
	11	
903.	9 10	1
s in 1	6	the second se
et day	· 80	ł
ed qui	2	:
selecte	9	•
m the	N	
re fro	*	
rackpo		
it Bar		
ure) a	1	
nperat	Noon.	
for ten	=	
iits (corrected for temperature) at Barrackpore from the selected quiet days in 1903.	10	
(corr	6	
. units	8	
. G. S	. L	
e in C	v	
l Foru	S	
isonta	4	
e Hor	.0	
s of th	6	
ly means of the Horisontal Force in C. G. S. uni	-	۰ ۱
Hourly	Mid.	
Ł	Hours.	

1	-	4	æ	1
-	301	, 184	198	
_	3 201	- 173	16t	
	198	169	901	
1	1,98	691	195]
	198	1/1	192	
	261	173	194	
	199	179	194	
	<i>1</i> 61	178	193	-
	198	182	197	
	304	189	301	
	215	961	203	
	323	205	208	
	200	915	210	-
-	219	213	18	
	310	208	311	
Winter.	201	197	207	
	194	161	201	
	194	183	198	
	197	181	195	
	197	178	194	
	196	175	192	
,	193 194	173	101 001	
+	193	172		
-37000+	194	1/1 1/1	161	
	192	1/1	061	
33	•	•	•	1
19,	•	•	.•	
Months, 1903	October	November	December	

Summer.

	961	205	
	161	305	
,	161	206	
	195	207	
	195	207	
	198	305	
	204	310	
	300	316	
	213	221	
:	214	. 10	
	208	226	
	301	220	
	196	321	
	194	203	
	193	197	
	193	300	
	193	206	
	193	206	
	189	206	
	(8)	204	
	681	305	
	. 183 185 189 184 189 192 193	204 205 204 206 206	
	183	304	
	•	•	
	•	•	
	August	September	
		R	2

1		1		-			r		
		~		•	Ī	ī		•	ī
	2	~		ï	-15	ĩ		0	4
٠	σ	4		Ĩ	-15	3		ĩ	4
	80	~		5	- 13	Ŷ		ĩ	ĩ
	2	~		Ť	Ī	ţ		ī	9
	و	~		Î	ĩ	ļ	ŀ	Ĩ	ĩ
	N	~		Ť	٢	ĩ		+2	1
	*	*		ĩ	6	ī		*	1 +
		~		.+3	+5	+3		+13	+1
	8	х		+ 14	+ 13	+5		417	+13
	-	х		+31	+31	01 		81+	+ 16
	Noon.	Х		+ 25	+ 32	+ 12		+13	+17
	H	х		+ 18	+ 29	+14		4	+11
	9	х		6+	+ 24	+13		•	+
	٥	*		0	+13	+0		Î	ĩ
	80	х		-1	+	+9		r	-12
	2	х		Ĺ	ī	0		ĩ	r
	٥	*		Î	ĩ	ĩ		0	ĩ
	N	~		Į	-0	Ť		ĩ	-33
	*	х		ĩ	ĩ	9		ĩ	33
	6	х			Ï	ĩ		ĩ	ĩ
		~		ĩ	- 13	ñ		ĩ	ī
	-	~		-	-13	ĩ		Ï	ĩ
	Mid.	۲		6	-13	ĩ		-13	Š
				•	•	•		•	•
	_		ю3.	•	•	•		•	•
	Hours.		Months 1903.	•	•	•		•	•
	-		Mont	L	Der	ker			Ŀ
			4	October	November	December		August	September
		•		Ŏ	Ž	ă		Au	Se

Diurnal inequality of the Horisontal Force at Barrackpore as deduced from Table V.

TABLE VI.

Digitized by Google

Norg.-When the sign is + the reading is above the mean. In August the results have been compiled from 3 selected quiet days only.

VII.	
TABLE	

•

Hourly means of the Declination as determined at Barrackpore from the selected quiet days in 1903.

9 10 11 Mean.				× 8:58 × 52 × 52 × 52 × 52 × 52 × 52 × 52 × 52	25'6 25'8 25'6	25'8 25'8 25'6 25'6 25'8 25'6 25'0 25'1 25'1	25'8 25'8 25'8 25'6 25'8 25'6 25'0 25'1 25'1	25'8 25'8 25'6 25'8 25'0 25'1 26'0 25'1
8		. '	32.8	35.6	35'I		36'0 3	
-		•	52.6	25.7	52 .3	-	1.92	0.90
ø			9.S e	25.7	1.52		7 .92	
S			36.0	35.7	5 2.3	,	37.1	0.ye
4	•	·	.9 2	3 6.0	35.3	-	0.22	9.ye
		` 	35.7	0.98	52.3		26*2	Ĩ
		`	24.8	25.7	35.3	_	25.2	
-		•	23.8	52.3	34.8	_	34.1	
Noon.		`	2.Se	2.42	24.7	-	3.44	
:		` 	24.6	24.8	25.0	-	34.9	
2	Winter.	` 	36.3	36.0	32.8	Summer.	36.3	
<u>о</u>	F		2.22	9.92	35.4	Sur	28.1	
∞.		<u> </u>	27.7	26.4	24.0	_	5.62	
~			2.12	25.4	34.4	_	2.62	
.		·	5.6	32.0	24.7	_	28.3	
s		`	35.8	52.0	24.7		37.0	200
+		<u> </u>	9 .22	2,3	32.0	_	6.9 z	
6			52.9	25.4	32.0	_	36.8	0.yc
8		•	36.0	35. 6	35.3		268	1.ye
-			36.0	25.7	25*3		36.7	1.ye
Mid.			5 .6	25.7	35.1			96.0
Hours.	Bast 1°+	Months 1903.	October .	November .	December .		Åugust .	Sentember

August means are derived from 3 quiet days only.

NO. 26 PARTY (MAGNETIC).

125

=	-	0,0	z .0+	. 0. 0	
<u>•</u>		0,0	0. 0	1.0-	-
Q		1.0-	0.0	1.0-	
	-	0.0	0.0	0.0	
-		1.0+	1.0+	z.0+	-
v	•	-0.3	1.0+	0.0	
° N	- ·	+0.3	1.0+	+0.3 +0.3	
+	· •	2.o+	† .0+		
69	`	0	+0.4	+0.3	
		0.1	1.0+	1.0+	
-		2.0	0.4	0.40.3 +0.1	.
Noon.	•	1.2	6.0	-0.4	
11		-1.3	8.0 	.0 	,
- 10		+0.4	+0.4	1.0+	·
6	•	+ 1.7	0.1+	£.0+	
œ	•	6.1 +	8.0+	-0.3	
2	•	+ 1.4	0.3	-0.1	
ە		1.0+	9.0	-0.4	
ي. مر	~ *	0.0	2.0 9.0 9.0 2.0 0.0	-0. 4	
+		2 .0	-0.3	I.0 	
3		1.0+	2.0-	1.0	
	•	1.0+ 0.0- 2.0- 1.0+ 2.0+ 2.0+ 1.0+		0.0 + 0.3 + 0.10.10.10.40.40.	_
-		+0.3	1.0+ 1.0+	7 .0	
Mid.		1.0+	1.0+	0.0	
		• •	•	•	
Heurs,	1903. Months.	•	•	•	
Ξ	T Wo	October	November	December	

Diurnal inequality of the Declination at Barrackpore as deduced from Table VII.

TABLE VIII.

•

	5.0	0,0	
	+2'9 +1'5 -0'4 -1'7 +2'2 -1'9 -1'1 -0'4 +0'4 +0'5 -0'2 -0'6 -0'6 -0'6 -0'5	0.0	
	9.0-	+3.0 +1.4 -0.0 -2.1 -3.3 -2.7 -1.5 -0.1 +0.8 -0.9 +0.1 0.0 -0.1 -0.1	
	9.0-	1.0-	
	5. 0	0.0	
	5 .0-	1.0+	
	+0.2	6.0	
	+ 0.4	8.º +	
	-0.4	1.0	
	i,i -	-1.5	
	6,1	L.e	
	+ 3.3	-3.3	
	<u>ـــــ</u>	-3.7	
	-0.4	9.0 	
	+ 1.5	* .1+	
•	6.2+	+3.0	
	+ 3.1	+3.0	
	L.1+	S.1+	
	· -0.1 +0.1 +0.5 +0.5 +0.3 +0.4 +1.2 +3.1	-0.1 +0.1 +0.1 +0.5 +0.3 +0.2 +1.2 +3.0	
	+ o.3	+0.3	
	+0.3	z.o.+	
	z .0+	1.0+	
	1.0+	1.0+	
	1.0-	1.0-	
	•	· •	
	•		
	August	Septemb er	

When the sign is + the magnet points to the east of the mean position when - to the west.

1903.
N
RECORDS
MAGNETOGRAPH
ОF
LOSS
OF
STATEMENT

-1

Barrackpore Observatory.

· · · · · · · · · · · · · · · · · · ·	Cause of interruption.		Started on the 8th August.	Shutters closed at wrong time	Suullets crosed at wrong time.	Lamp blown out by wind.	Lamps got smoky.	Observer was ill.	Wheel not properly clamped.	Ditto.			•	, '	
•	Duration	of Break.	E L	. '	1	3 38	2 35	6 34	8 18	0 (1) (1)	••			36 54	
DECLINATION MAGNETOGRAPH. Period of Break.		ő	Date		20th August .	28th "	13th Sept.	21st "	15th Nov.					, Total	
	BREAK.	To	h. m.	•	10 4 1	14 58	7 35	17 4	10 42	13 0		<u>.</u> .			
	PERIOD OF	On	Date		20th August •	28th " .	r3th Sept.	21st " •	14th Nov.	1st "			•		
		From	ii ii		9 30	13 20	о О	10 32	13 4 0	0 11					
	Duration	of Break.	É .4		I S	13 39	ىر ە	2 19						21 3	
HORIZONTAL FORCE MAGNETOGRAPH.		On	Date		20th August .	29th " .		21st Sept.						Total .	
	PERIDD OF BRBAK.	To	Ë ÷		10 41	79		13 27							
	PERIDD (٩	Date		20th August .	28th " .		21st Sept.							
		From	ų. H		9 30	18 30		8 11							

NO 26 PARTY (MAGNETIC).

127

TOUNGOO MAGNETIC OBSERVATORY.

In anticipation of the arrival of the magnetographs for the Burma observa-

General remarks.

tory, certain additions and modifications

of the original observatory buildings near Rangoon were ordered towards the end of 1903, but before they could be put in hand, the question arose as to whether it would not be best to abandon the site altogether. The alignment of the large iron main for supplying Rangoon with water from the new Hlawga tank, passes within a few feet of the main building and a satisfactory re-alignment would have proved a very expensive matter, apart from the delay involved. This and the threatened approach of a circular railway would have rendered the existing buildings useless as a magnetic observatory and it was therefore wisely decided to build afresh in a safer locality. There was necessarily some delay in arriving at this conclusion and it was not till the end of April 1904 that the officer in charge of the magnetic party was able to set about the choice of a new site. By the middle of May, a suitable spot was selected in the old cantonment at Toungoo, a large town situated on the railway about 170 miles north of Rangoon. Plans were drawn up based on the existing observatory at Barrackpore and sanction to commence work was obtained in June. In spite of heavy and prolonged rain, the buildings were finished in the following November, an achievement which reflects great credit on the Executive Engineer of the Public Works Department at Toungoo. In the following month the instruments were erected but an account of them and of the observatory must be held over for the next report.

Digitized by Google

THE NEW YONS PUBLIC LIBRARY ASTOR, LENOX AND THOSE FOUNDATIONS.

NR X

: . .

Ċ

•

en avai e maint

0

Π

120

PENDULUM OPERATIONS.

Extracted from the Narrative Report of Major G. P. Lenox Conyngham, R.E., in charge No. 23 Party (Astronomical) for Season 1903-04.

Up to the date of my return from furlough No. 23 party had been joined with No. 22 and had been employed on Latitude observations.

I arrived in Dehra Dún on December 14th 1903 bringing with me the four pendulums of the new apparatus. The rest of this equipment did not arrive till some time later and in the meantime the construction of several accessories was put in hand.

As there is very little resemblance between the new pendulum equipment and the old one, belonging to the Royal Society, which was used by Captain Basevi and Captain Heaviside between 1864 and 1870, and which is described in Volume V of the operations of Great Trigonometrical survey, a short account of that now purchased for the Survey of India will not be out of place.

Differences between new and old apparatus. The fundamental differences between the new equipment and the old are—

- (a) That the new pendulums are half seconds pendulums instead of seconds pendulums and consequently only one quarter as long as the old.
- (b) That the coincidences between the free pendulum and the clock pendulum are not observed directly, but by a method invented by Col. von Sterneck of the Austrian National Survey, which results in a reduction of the labour combined with an increase of accuracy.

A third point of difference is that the old pendulums were swung in vacuo whereas the new ones are not, but there is no reason why the new ones should not be swung in vacuo so that this difference is not essential.

The present apparatus includes four pendulums, numbered, respectively, 137,

Description of Apparatus. Pendulums.

138, 139 and 140. They are made of brass heavily gilded. In the head of each a block of agate, ground to a knife

edge on the underside, is securely fixed. The angle of the knife edge is about 90° . The edge is not continuous but consists of tooth-like portions, two on each side of the pendulum's stem. The inner teeth are the real or working edges, the outer being merely auxiliary or false edges on which the pendulum is hung when not in use, and on which it is placed by hand before being lowered into its final position by means of a slow motion screw; they serve in fact to save the real edges from unnecessary wear and from accidental shocks. A small mirror is fixed to the head of each pendulum in such a position that it is vertical when the pendulum is hanging on its edges. The purpose of this mirror will be explained later.

The stand, on which the pendulums are in turn placed for observation, Stand. Stand. surface of which three large parts have been removed.

S

The base is circular and stands on three foot-screws which pass through threaded projections. In order to do away as far as possible with shake the central part of the thread of the female screws is cut away and clamping thumbscrews are provided, so that when the latter are tightened the foot-screws are firmly gripped by the upper and lower portions of the female screws and are not held in the middle at all.

A polished, circular, agate plate is fixed in the upper surface of the truncated cone. It is pierced by an oblong aperture through which the head of a pendulum can be passed: after passing the head up from below it is turned through a right angle so that it lies across the aperture, bridging it, when the edges may be rested on the polished surface. In order to avoid shocks two stirrups are provided for the reception of the auxiliary edges: they consist of brass blocks cut into Vs on the top and fastened to the ends of a fork-shaped bell-crank lever. The blocks pass through holes in the agate plate, one on either side of the oblong aperture. By means of a screw acting upon the other end of the lever the blocks can be made to protrude above the agate plate or can be withdrawn below it. When a pendulum is to be placed in position they are made to protrude and the false edges are placed in their Vs, then by turning the screw they are withdrawn until the weight of the pendulum is taken by the real edges. The false edges are not so wide as the blocks and thus when the latter are withdrawn into their holes the former are not in contact with anything.

The mirror mentioned above is now seen above the agate plane.

The stand is of such a height that the bob of a suspended pendulum is about 3 inches above the upper surface of the base plate.

Fixed to the base is the starting lever; by it the pendulum can be deflected from the vertical by any desired amount, and on withdrawing it the pendulum begins to oscillate with an amplitude equal to the angle through which it was deflected.

In order to make the stand as steady as possible means are provided for clamping it tightly, after it has been levelled, to a granite slab which forms part of the equipment. This slab is in turn cemented to a low pillar, built of brick in cement, so that as soon as the cement has set the whole forms a single fairly rigid mass.

The next part of the apparatus to be described is the flash box. It consists Flash box. of an oblong rectangular brass box standing on three foot screws, so that it can be levelled, and having a small telescope, similar to that of an ordinary level, rigidly fixed on the top with its axis parallel to the longest side of the box.

In the front of the box is a small horizontal slit, and inside there is an electromagnet with an armature to which is connected a lever carrying a shutter with a similar slit in it. This shutter is close to, but not in contact with the front of the box. A spring attached to the lever draws the armature away from the magnet when current is not passing, but when current passes the attraction of the magnet overcomes the resistance of the spring.

By connecting the electromagnet with a break circuit clock the lever is made to rise and fall once in each second; on each occasion the slit in the shutter passes across the slit in the box, and as it does so a ray of light from a suitably placed lamp passes through. Thus an observer sitting in front of the flash box would see two flashes of light every second. Of these the first corresponds to the make of circuit and the second to the break. As the demagnetisation of an electromagnet takes place more instantaneously than the magnetisation, the second flash is selected for observation. The break circuit flashes are precisely one second apart if the clock is keeping true sidereal time.

The flash box is now so placed that the flashes of light may fall on the Method of observing. Method of observing. Method of the pendulum is at rest an observer looking into the telescope sees the reflection of the flash on the horizontal wire. Thus the coincidence of a flash with the horizontal wire shows that at the instant at which the flash occurred the pendulum was vertical, or, at any rate, in a definite position very nearly vertical. If now the pendulum be set vibrating and if its vibration period be precisely half a second, at whatever part of the field of view of the telescope the first flash is seen (ignoring entirely the flashes which occur at make circuit) there also will all subsequent flashes appear, for at the end of each second the pendulum will always be in the same position. It will also be moving in the same direction as each flash occurs; it of course passes through the same point in the opposite direction at intermediate instants but there will be no corresponding flash.

The pendulums of this apparatus vibrate in about 0.507. Therefore when one of them is oscillating it does not complete a to and fro swing in one second, and successive flashes will be seen at different points in the field of view. Let us suppose that the first flash was seen on the horizontal wire and the second somewhat below it, then the third will be still lower and so on till they pass out of the field altogether, after the lapse of a short time they will begin to re-appear from below and will now form an ascending series; if the (c+1)th flash again coincides with the wire it will show that the pendulum is at this instant in the same position as it was at the first flash, but as the first flash belonged to a descending series and the (c+1)th to an ascending one, it is clear that the pendulum is moving in opposite directions at these two epochs and that it has lost one vibration in the interval. Hence in c seconds the pendulum has made (2c-1) vibrations and if s be the time of vibration of the pendulum

$$s = \frac{c}{2c - 1}$$

If the pendulum's time of vibration had been less than one second then it would have gained one vibration instead of losing one and the formula would be

$$s = \frac{c}{2c+1}$$

c is called the coincidence period.

With a new pendulum there might very well be some uncertainty as to whether its period was greater or less than half a second. The following considerations will serve to decide this question.

If the pendulum has a period greater than half a second, then at a high temperature its period will differ from half a second by more than it does at a low one, and consequently its coincidence period will be shorter at a high temperature than at a low one, whereas the reverse will be the case if the pendulum's period is less than half a second.

Again if on watching the reflection of the front of the flash-box it is seen to be flying up across the field as the flashes of a descending series occur, and to be flying down as the flashes of an ascending series occur, then the period of the pendulum is greater than half a second; and on the contrary if the reflection flies

S 2

down with descending flashes and up with ascending ones the period is less than half a second.

The coincidence will not as a rule occur at the instant at which a flash is emitted, but somewhere between two flashes; by observing the position of successive flashes with reference to the horizontal wire a good estimate can be made of the time at which the flash would have been exactly on the wire, this estimated time is recorded and the difference between two successive coincidences is the coincidence period. The interval between a coincidence in an ascending series of flashes and one in a descending series is only equal to the true coincidence period if the horizontal wire is in the exact position of the flash reflected by the pendulum at rest, if this be not the case there will be an inequality in the intervals from "ascending to descending" and from "descending to ascending." It is therefore better to compare ascending with ascending and descending with descending and take half the observed interval.

To the front of the flash box is attached a porcelain scale divided into parts of 3^{mm} each. By observing the reflection of this scale as the pendulum vibrates and counting the number of graduations that pass over the horizontal wire a measure of the amplitude of the vibration is obtained. If d be the distance from scale to mirror in millimetres and n be the number of graduations that pass, then the amplitude of the vibration, that is the angle from the position of rest to the extreme position on either side, is equal to $\frac{3^n}{4d}$, for the angle is doubled by reflection.

The distance from scale to mirror may be conveniently made about 2 to $2\frac{1}{3}$ metres.

The temperature of the pendulum is determined by two centigrade thermo-

Temperature.

Clock.

meters held by clips fixed to the stand, one on each side of the pendulum; their height

is so adjusted that the bulb of one is as much below the centre of the pendulum's stem as that of the other is above it, thus if the temperature of the air varies with the height above the floor the mean reading of the thermometers should give the mean temperature of the stem of the pendulum. Each degree of the scales of the thermometers is divided into five parts and the reading is made to fiftieths by estimation.

The thermometers are read by means of a telescope, so that the observer has not to go close to them for the purpose, the reading is moreover more accurate than it would be by eye.

In order to determine the density of the air and the correction to reduce the

Density of air. be in vacuo a barometer and a hygrometer have to be frequently read during the observation.

The clock belonging to the equipment has a half-seconds pendulum made of invar.

The break circuit arrangement consists of a light lever fastened to the back of the case near one side, which is lifted by a short arm on the pendulum as the latter approaches the end of its swing in that direction. When the arm comes into contact with the lever circuit is made. The lever's position is adjustable so that the fraction of a second during which current passes can be varied. It is convenient to allow contact to continue for about 0'3 or 0'4 of a second : this separates the make and break flashes satisfactorily.

Though the pendulum beats half seconds yet it only comes to the extreme position at each side once every second, circuit is therefore only made and broken

NO. 23 PARTY (ASTRONOMICAL).

once in each second and not twice, as would be the case if the break circuit arrangement was connected with the escapement wheel.

As no clock can be trusted to keep an even rate all through the 24 hours, even though its rate from day to day is

Arrangement of the observations.

even though its rate from day to day is steady, and as the effect of a small error

in the adopted clock rate on the time of vibration of a pendulum is large compared with the effect of the variations in gravity which are being sought for, it is necessary to take measures to eliminate such errors as far as possible.

Pendulums vibrating in vacuo will go on swinging for many hours and so it was possible with them to cover nearly the whole 24 hours separating the determinations of the clock error; but with these pendulums, which swing in air at the natural pressure, long swings are not possible.

The first plan adopted was to have two or more observers and to make series of observations one after another all through the night and day, but an analysis^{*} of the results obtained by this laborious method showed that a value of very nearly equal precision could be obtained by making two observations separated by an interval of 12 hours. That is to say that the variation of the clock rate is such that the mean of the actual rates at two epochs 12 hours apart is very nearly equal to the average rate during the 24 hours.

The programme of observation is therefore arranged so as to take advantage of this fact.

Each of the four pendulums is observed twice in the period of 24 hours separating the star observations whence the clock rate is derived. About one hour is devoted to the observation of each pendulum, so that a set of observations occupies about 4 hours by day and 4 hours by night. It is to be remarked that neither a day nor a night observation would by itself be of much value.

One of the most important advances in pendulum operations that has been The wag correction. The applied to the time of vibration on account of the yielding of the stand. The effect of yielding is that the point of suspension moves horizontally to and fro following the pendulum as it swings, the amount of displacement in the case of small amplitudes being nearly proportional to the angle with the vertical which the pendulum makes at any instant.

is, and if the amount of the horizontal displacement can be measured this virtual increase of length can be computed and thence the effect on the time of vibration. This yielding of the stand is called by the Germans " Das Mitschwingen,"

Thus the pendulum oscillates as if its length were a little greater than it really

or "Die Mitschwingung." The correction on account of it is called by American observers "The Flexure correction" and it may be called "The reduction to a rigid stand." Following the analogy of the term 'lag, 'universally used in connection with the rate at which a body takes up temperature, the word 'wag' has been suggested as a good one to express the movement of the pillar now under discussion. It certainly seems to give a good idea of the action that takes place and it has the advantage of brevity. I propose to adopt it as the English equivalent of Mitschwingen.

Several methods have been devised for the determination of the wag and it will be of interest to mention some of them.

^{*} Vide report on the determinations of gravity between Kolberg and Schneekoppe in 1894 by L. Haasemann, published by Königl. Preus. Geodāt. Institut in 1896.

One method was to apply a pull of known magnitude, (say 1 kg), to the top of the pendulum stand and observe with a microscope the displacement produced : hence the displacement produced by the pull of the oscillating pendulum could be computed and the effect on the time of vibration deduced. Another method was to apply successive measured impulses, at intervals equal to the double period of the pendulum under observation, and to observe the amplitude of the oscillation induced in the pendulum by any convenient number of impulses, whence a reduction could be made to the effect of the pull of the pendulum. Sometimes pushes only or pulls only were given to the stand and sometimes both, in the latter case the interval was made equal to the pendulum's vibration period. This is the method called by the Germans 'Das Wippverfahren' or 'rocking method.'

A third system consisted of attaching a simple pendulum to the stand and observing the oscillation set up in it by one of the ordinary pendulums swinging in the usual way. Finally this gave way to the method now employed, which was invented by Professor Schumann of the Prussian Geodetic Institute.

A special, heavy, adjustable pendulum is suspended in the position ordinarily occupied by the invariable pendulum, and the latter is hung on a bracket strongly fixed to the stand, so that the knife-edges of the two pendulums are parallel and in the same horizontal plane, and so that their planes of oscillation coincide. The heavy pendulum is adjusted until its time of vibration is very nearly the same as that of the invariable pendulum. This special or auxiliary pendulum has an arm, which carries a mirror, fixed to its head and the length and shape of this arm are such that when the two pendulums are suspended their mirrors are side by side and can be simultaneously viewed in the telescope. The auxiliary pendulum, which will now be called the driving pendulum, is made to oscillate, and by degrees the other (the driven pendulum) which was at first at rest, acquires an oscillation the amount of which depends on the rigidity of the stand, (by the stand I mean both the pillar and the stand for want of rigidity in either increases the wag). At the same time the amplitude of the oscillation of the driving pendulum is decreasing and, assuming that the driven pendulum was perfectly at rest when the oscillation was imparted to the other, Professor Schuman shows that at time t from the commencement of the oscillation.

$$\frac{\Phi}{\Psi} = \frac{\delta l}{2t} \sqrt{\frac{g}{l}} t$$

where $\phi = \text{amplitude of driven pendulum} \\ \psi = ,, \quad \text{driving }, \quad \}$ at time t

l = the length of the pendulum (*i.e.* of the equivalent simple pendulum) $\delta l =$ the small virtual increase in l due to the yielding of the stand.

The values of ϕ and ψ are obtained by observing with the telescope the movements of the reflections of the scale; l is unknown but we may express it in terms of g and the time of vibration common to both pendulums, calling the latter s

we have $l = \frac{s^2 g}{\pi^2}$

also $\frac{ds}{dl} = \frac{1}{2} \frac{\pi}{\sqrt{gl}}$ and δl , being a small increment in l, may be put = d l

Hence substituting and simplifying

$$\oint_{\Psi} = ds \frac{\pi}{s^2} t$$

Since it is difficult to comply with the condition that the driven pendulum is to be at perfect rest when the driver begins to oscillate, it is better to assume that there is a small initial vibration and to put

$$\frac{\Phi}{\Psi} = x + ds \frac{\pi}{s^2} t$$

Taking two observations at times t_1 and t_2 , and subtracting the resulting equations

we have
$$\frac{\Phi_2}{\Psi_3} - \frac{\Phi_1}{\Psi_1} = d s \frac{\pi}{s^3} (t_2 - t_1)$$

and $ds = \frac{\frac{\Phi_2}{\Psi_2} - \frac{\Phi_1}{\Psi_1}}{t_2 - t_1} s^3$

ds is the correction to the observed time of vibration of the auxiliary pendulum : it is always negative.

When we wish to find the correction to be applied to another pendulum oscillating on the same stand we must consider that the yielding of the stand is proportional to the horizontal pull of the knife-edge on the agate plane, and that this pull is proportional to the moment of the pendulum about the knife-edge, so that representing the moments by M and M_1

$$d s_1 = ds \frac{M_1}{M}$$

To determine M and M_1 careful measuring and weighing would be required, but the ratio may be found by the following method.

Suspend the two pendulums as if for the wag observation, bring them to rest and read the reflections of the scale. Now pass a thread round their stems, as if to tie them together, and tighten it until both pendulums are somewhat deflected from their position of rest, but not so much as to throw the reflections of the scale out of the field of the telescope. If the thread be horizontal the deflections of the pendulums will be inversely proportional to their moments about their points of suspension; and the differences between the scale readings before and after tying are measures of the deflections.

Thus the correction to the observed time of vibration of any pendulum which oscillates in the same time as the auxiliary pendulum can be found.

The four pendulums of this set are so similar that it is not necessary to determine their corrections separately. The auxiliary pendulum has been adjusted to vibrate in very nearly the same time as No. 137 and the correction obtained by the observation of this pendulum is applied to each of the others.

The co-efficients of the temperature and density corrections have been Temperature and density corrections.
Temperature correction = -49×t×10⁻⁷ where t is the temperature on the centigrade scale.

The density correction is not so constant for all the pendulums and separate co-efficients have to be employed.

If k represent the co-efficient the formula is

Density correction $= -k \frac{B(1-\frac{2}{3}e)}{760(1+0.00307t)}$ where e = elastic force of aqueous favour B = height of barometer in millimetres t = temperature centigrade

The co-efficients as determined at Potsdam are

s u

0	a o t o t	
137	594 ×	10 ⁻⁷
138	571	"
139	607	"
140	6 06	"
Arc of vibration.		Fo arc t
	s = s' (1	$-\frac{\alpha^3}{16}$

For the reduction to an infinitely small arc the simple expression.

is found to suffice

where s' is the observed time of vibration and α the mean amplitude or semi-arc. If u be the clock's daily rate on sidereal time the correction to the observed time of vibration is

Clock rate.

or $u \times 58.7 \times 10^{-7}$

86400 The apparatus is only capable of giving differential results. That is to say

Standardisation.

the difference in the time of vibration of the mean pendulum at two stations is used to deduce the difference in the force of gravity, hence it is necessary to begin by determining the time of vibration at a station where g is known.

Kew was selected as the most suitable base station for the Indian pendulums and observations were made there in June and October 1903 by Major Burrard, Mr. Constable (of the Kew staff) and myself. These observations have been described in detail elsewhere so I need not do more than put on record the result of the standardisation.

It is as follows :-

Time of vibration in vacuo, at temperature o°C, on a perfectly rigid stand, when the arc is infinitely small, at Kew.

> of pendulum 137 = 0.5067070138 0.2069490 0.2066104 139 140 0.2062339 $0.202001 \pm 3 \times 10^{-1}$ mean

On arriving in India the first step was to make observations at Dehra Dún,

which is to be the base station of the

survey. The pendulum pillar was therefore erected as nearly as possible over the spot on which Captain Basevi had swung his pendulums.

A good many accessories which we had been able to borrow in England

Dehra Dún.

Arrival in India

had to be made before I could begin observing in Dehra Dún and this took time.

The first regular series began on January, 25th and was finished on February, 6th. A preliminary reduction showed that every thing was working well and that

the pendulums had undergone no appreciable changes of length during the voyage from England.

The other stations which it was decided to visit during the first season were

Season's programme.

Calcutta, Madras, Bombay and Mussoorie, at all of which the old pendulums had been

swung, and at the first three of which observations had been made by officers of the Austrian Navy.

Calcutta.

The party left Dehra for Calcutta on February, 13th.

For

In Calcutta Captain Basevi's station is no longer available, but the observatory belonging to St. Xavier's College, which is less than 100 yards from the spot in the old M. I. Office which Captain Basevi had occupied, afforded a suitable site, especially as it was here that the Austrian observations had been made. The rector of the College, the Very Revd. Father Lafont, C.I.E., S.J., acceded in the most cordial way to my request that I might be allowed to set up the apparatus in the building, and both he and Father de Clippelaire, who is in immediate charge of the observatory, allowed me every facility.

My first night's observations passed off without incident, but when I came to observe by day I found that the arc through which the pendulum was vibrating kept on varying in magnitude and that the time of oscillation was very irregular.

To exemplify this I may mention that in making the observation it is usual to observe eleven consecutive coincidences, thence to compute the time at which the sixty-first will occur and to observe it and the following nine. The computed and observed times of the 61st coincidence rarely differ by more than 1^s or 1^s.5, but in Calcutta differences of 10^{sec} were commonly found. An uncertainty of this magnitude makes the observation quite valueless, and so after satisfying myself by several experiments that it was no accidental or temporary phenomenon that I had observed, and that it was not to be avoided by altering the hours of work or the plane of vibration of the pendulum, I reported the matter by telegram to the Superintendent of Trigonometrical Surveys and asked permission to abandon the attempt to determine the force of gravity in Calcutta.

Earth tremors are undoubtedly the cause of this irregularity; the whole city of Calcutta may almost be said to be floating and consequently the traffic sets up large vibrations. This had been found a serious hindrance to the use of the mercury trough for determining the dislevelment of the transit instrument, during longitude operations, as it was only in the stillest hours of the early morning that the surface of the mercury was sufficiently unruffled to give distinct reflections, but I had not expected the pendulums to be seriously affected, for I had thought that the tremors would be of very short period.

No difficulty of this sort is alluded to either by Captain Basevi or by the Austrian observers. In the case of the former it is probable that the long pendulum was not appreciably influenced owing to its greater period; but the latter observed at precisely the same spot as I did, and with an almost identical apparatus and it is curious that no remark has been put on record It is possible that they observed at night only, when the irregularity is not very serious though visible if one is on the look out for it, but as has been explained above it is not permissible to assume that the rate of a clock at any instant is equal to that derived from star observations separated by 24 hours. Apart from this consideration it is clear that a half seconds pendulum clock will be affected by the tremors just as much as the free pendulum so that no reliance could be placed on its indications.

In the Madras observatory the room which Captain Basevi had occupied Madras. Madras. used this room. Wadras observatory the room which Captain Basevi had occupied was available and I erected the apparatus there. The Austrian observer had also

Mr. R. Ll. Jones, Deputy Director of the Observatory, took the greatest interest in the work and helped me in every way. Under his direction special time observations were made by Mr. Solomon, the chief assistant, so that I was relieved of all care as to the determination of the clock rate.

т

In Bombay the room in the Colába observatory which Captain Heaviside had

Colába.

occupied was kindly placed at my disposal by Mr. Moos the Director.

The fact that practice was going on with heavy guns mounted in a fort quite close to the observatory, caused me anxiety after my Calcutta experience. I was however so fortunate as to be able to finish all the observations during a period of 6 days which separated two parts of the artillery practice.

Being curious, however, to see what effect the tremendous vibration set up by the guns would have on the pendulums, I left the apparatus standing for another day, and carefully watched the behaviour of a suspended pendulum during a morning on which firing was going on. Though on each explosion the windows rattled and the whole house shook, I was not able, on any occasion to detect the slightest oscillation in the pendulum. Evidently the tremors caused by an instantaneous shock of this kind, at any rate in places where the ground is firm and rocky, have a period which is short in comparison with half a second. I was interested to see that the seismograph of the observatory which consists of a long period horizontal pendulum shows the same peculiarity. The shock of the guns does not produce the slightest irregularity in the trace of the recording pen, but a light pressure with one finger on the massive pillar which carries the pendulum, if continued for a sufficient time will drive the curve off the paper.

The next station to be undertaken was Mussooree. Captain Basevi had

observed in a small building in the grounds of Evelyn Hall, which was then the Trigo-

nometrical Branch Office. This building was being enlarged when I reached Mussooree, but I was able to obtain permission to occupy the room in which the pendulums had formerly been swung.

As it will be desirable to have a station in Mussooree at which observations can be made at any time, and as the old building will probably not ordinarily be available, a new station was selected in Dunseverick, a house on Vincent's Hill.

Finally a second series of observations were made in Dehra Dún at Captain

Closing observations.

Mussooree.

Basevi's station to close the season's work and to test the invariability of the pendulums.

In the following table the results of the observations at the different stations are shewn :----

	Dehra Dún,			M us so (Dehra Dún,		
No. of Set. January and February.		Madras.	Colaba.	Dunseverick.	Camel's Back.	May and June.	
E	·5 072528	·5074547	•5073655	•5073260	•5073234	•5072510	
3	30	62	43	71	17	31	
3	25	54	38	~ 71	14	26	
4	23	57	41	66	•••	14	
5	31	•••			•••	15	
6	28	•••		•••	•••		
Mean .	.5072528	·5º74555	.5073644	.5073267	•5073222	.5072519	

Time of vibration of Mean Pendulum.

The average probable error of the result of one set of observations is $\pm 5^{\cdot 2} \times 10^{-7}$, hence the average probable error of the mean of four sets, which is the usual number at a station, is $\pm 2^{\circ} \cdot 6 \times 10^{-7}$.

On the basis of the observed value of the time of the vibration of the mean pendulum at Kew, vis., 0.5067001 and of the assumed value of the force of gravity there, vis., g=981 .200 dynes, the values of g at the above stations have been computed.

In the following table the values are given; and the results obtained by Captains Basevi and Heaviside, and also

Comparison with former values,

Captains Basevi and Heaviside, and also those derived from the Austrian observations are added.

Station.	Dehra Dun.	Calcutta.	Madras.	Colaba.	Mussooree.	
Jugnou.	Dema Dun.	Calcula.	Madias.		Dunseverick.	Camel's Back.
Basevi or Heaviside .	978'962	978.776	978.237	978.605		978.751
Austrian	s	·827	} •293	∫ ^{.652}		
	۰ ۲	.838	5 -93	€ •662		•••
New	979°065	•••	'2 81	•632	978.778	.792
Differences, 3rd—1st .	+0.103	•••	+0.044	+0.032		+0.044

TABLE II.

It will be observed that the differences between my results and the former Indian observations are of constant sign. This would be satisfactorily accounted for by the absence of the wag correction in the old series, and by the fact that when the pendulums were standardised at Kew the stand was erected, so far as can be judged, in a more rigid manner that was generally possible in India; so that a positive correction to all the old values of g would be required. The nature of the stand, which was of wood and was capable of being taken to pieces for transport, would lead one to expect that its rigidity would not be uniform in all climates or on each occasion that it was erected. so that some variation in the differences is not surprising, but for the large amount of the difference at Dehra Dún, vis.: 0103, it is difficult to account. A change of 0'103 in g corresponds to a change of 0'0000258 in the time of vibration of a half-seconds pendulum. The ordinary wag correction with the present apparatus is about 50×10⁻⁷ or one-fifth of the above. Not having any experience of seconds pendulums or of other forms of stand I can hardly express an opinion as to the possibility of such a correction, but it is certainly larger than I should have expected.

So far the time of vibration and the derived value of g have been con-

Object of enquiry. Object of enquiry. Sidered merely as subjects of observation; but the value of g at a point in space of unknown position is a quantity of little intrinsic interest. It is only when it is considered in relation to the earth, so that it may throw light on the latter's form and structure, that it becomes worthy of study. If the earth's shape and the distribution of mass throughout the crust were precisely known the value of gat any point of the surface could be calculated; but as this is not the case, the reverse process is employed and we observe the value of g at different points and seek thence to infer the figure of the spheroid and the density of its crust.

T 2

NO. 23 PARTY (ASTRONOMICAL).

By pendulum observations, and other means, the figure of the earth is now

Theoretical formula.

known well enough for us to be able to say with fair accuracy what the value of gwould be in any latitude, at sea level, if the crust were homogeneous.

The result is obtained by the formula given by professor Helmert in 1884.

$\gamma_0 = 978.000 (1 + 0.005310 \sin^2 \phi)$

If then having observed g at any point of the earth's surface we can compute what the value would have been had the station of observation been at sea level, we can by comparing the value with γ_0 ascertain whether the density of the underlying crust is in excess or defect of the average or normal surface density.

If the station of observation were situated in a balloon floating over a level

plain the only consideration to be taken Reduction to sea level. into account would be the greater distance from the earth's centre. Now the attraction of a sphere of radius R on a point $g_{o} = G \frac{\frac{4}{3} \pi R^{3}}{R^{3}}$ on its surface is

where G is the attraction of unit mass. If the point is above the surface by the height *h* the attraction becomes $g = G \frac{\frac{4}{3} \pi R^3}{(R+h)^3}$

Hence
$$\frac{g_o}{g} = \frac{(R+h)^3}{R^3}$$

or $g_o = g(1 + \frac{2h}{R})$ neglecting the term in h^3 .

terra firma we have to consider that be-

When, however, and this is the common case, the observations are made on

Correction for intervene mass. tween the surface of the sphere and the pendulum there is a quantity of matter which is exerting an attraction, and this must be allowed for before we can deduce from our observed g what the value of gravity at sea-level would be.

If the station is on an extensive plain, or in country which does not deviate very much from a plain, the attraction of the matter between the pendulum and sea-level will be very nearly equal to that of an infinite disc of thickness equal to the height of the station. In comparing the attraction of such a disc with that of the sphere their relative densities must be considered. As our aim is to discover deviations from the average surface density we shall assume that the disc is of this density; now the ratio of surface to mean density is $\frac{1}{2}$ and the attraction of an infinite disc of thickness h on a point at the centre of its upper surface is G 2 π h.

 $\frac{\text{attraction of disc}}{\text{attraction ot sphere}} = \frac{2 \pi h}{\frac{4}{3} \pi R} \frac{1}{2} = \frac{3h}{4R}$ Hence

Therefore taking in account both the increased distance from the centre of the sphere, and the intervening matter we have

$$g_{o} = g (I + \frac{2h}{R} - \frac{3h}{4R}).$$

Orographical correction.

Thirdly, if the station is situated on a mountain or in a valley, so that there

is much deviation from an infinite plain, a further correction, sometimes called the

topographical, but perhaps preferable the orographical correction must be applied.

Clearly if the station is on a peak the attraction of the matter between it and sea-level is less than that of an infinite plain, and the quantity $\frac{3}{4}\frac{h}{R}$ must be

diminished; and if it is in a valley with hills surrounding or partially surrounding it, all the matter that stands above the infinite plain exerts an upward attraction, that is, one of opposite sign to $\frac{3}{4}\frac{h}{R}$ therefore in this case also $\frac{3}{4}\frac{h}{R}$ must be diminished. Representing the orographical correction by O we have therefore

$$g_{o} = g \left\{ \tau + \frac{2h}{R} - \left(\frac{3h}{4R} - 0 \right)^{2} \right\}$$

The computation of O is not a very easy matter, and cannot be explained in detail here. It is best done by dividing the country round the station into annular portions by means of concentric circles, finding the average height of each annulus from a contoured map, or in the absence of such a map by the best available means, and then computing the attraction of each cylindrical element of the difference between the existing hills and the imaginary infinite plain.

We are now in a position to study the results of the past season's work Summary of Results. and then comparing the resulting quantities g_o with the theoretical values γ_o obtained by professor Helmert's formula. It must not be forgotten that the values of g are based on the assumption that the acceleration due to gravity at Kew is 981'200 cm. This is only an approximation and may hereafter have to be

revised. In Table III the various quantities that have been under discussion are given.

The orographical corrections at Dehra Dún and Mussooree Camel's Back are taken from Captain Basevi's Analysis which appears in volume V of the operations of the G. T. Survey. The correction for Dunseverick has not yet been computed.

STATION.	Latitude.	Height above M. S. L. <i>h</i> .	Observed g.	$g \cdot \frac{2h}{R} = H.$	$g_{\frac{3}{4}}^{\frac{3}{4}} \frac{h}{R}$ =B.	Oro- graphical correc- tion =0.	g+H+ B+O =g₀	t Theoreti- cal value at Sea Level γ _o	^{8,} 7.
	0 • <i>1</i>	feet.	cm.						
Dehra Dún • •	30 19 29	22 41	979 [.] 063	+:310	 `079	+.002	979°201	979'324	
Madras .	13 4 8	23	978.281	+°c02	001	0	978-282	978.266	+.010
Colába	18 53 47	32	978•632	+.003	'001	0	978 .634	97 8·545	+ .089
Dunseverick Mus- sooree.	30 27 31	7131	978 .7 78	+•668	*251	•••	•••	979 ° 334	•••
Camel's Back, Mus- sooree.	30 27 41	6924	97 ^{8.} 795	+.649	`243	+'027	979*228	979'335	
Dehra Dún • •	30 19 29	2241	979°066	+.510	•079	+:007	979'204	979'324	-'120

TABLE III.

We have now to consider what is the meaning of the differences between Interpretation. g_o and γ_o . Let us take the case of Colaba.

Here we have a station situated so nearly at sea-level that there is no room for any appreciable error in the corrections H and B.

Owing to the peculiar situation of India between the Himalayas to the North and the Ocean to the South some doubt attaches to the initial latitude of the Survey, and thence to all derived latitudes : the amount of this uncertainty cannot exceed 15".

In the equation
$$\frac{d\gamma}{d\phi} = 5.19 \sin 2\phi$$

if we put $\phi = 19^{\circ}$ and $d\phi = 15''$
we obtain $d\gamma = 0.0002$.

Which is insignificant in comparison with the difference between g_0 and γ_0 .

We therefore conclude that the difference is due to an excess of density in the crust of the earth underlying Colába.

The attraction of a disc of thickness h and density 2.8,—the earth's mean density being 5.6,—is $g \frac{3}{4R}^{h}$

Taking R, the earth's mean radius=20900000 feet, g=980, we find that to produce an attraction of 0.001, a thickness

$$h = \frac{4 \text{ R}}{3g}$$
 'oo1 is required
= $\frac{83600}{2940} = \frac{\text{ft.}}{28'44}$

Hence to produce an attraction of 0.089 there must be a disc 2,530 feet thick the density of which is 2.8 in excess of the average surface density.

If therefore we wished to estimate the deflection of the plumb line near Colába we should have to imagine a hill of density 28 and 2,500 feet high at the point vertically over the actual pendulum station. The form of this hill would have to be investigated by means of pendulum observations at neighbouring stations and ultimately a roughly contoured map, shewing the distribution not of the visible but of the real masses, could be drawn.

At Dehra Dún we have a defect of 0'103 in g_0 ; by the same rule as before this implies a deficiency of 2'8 in the density of the subjacent matter extending to a depth of 2,930 feet. As we have assumed that the surface density is 2'8, this means that we must imagine a cavity 2,930 feet deep under Dehra Dún; the height of Dehra above sea-level is 2,240, therefore for the effect on the plumb line we must consider that Dehra, far from being at a considerable attitude above sea-level, is 690 feet below it. Another way of stating the case is to say that the matter underlying Dehra Dún is so deficient in density—we do not know to what depth this deficiency may extend—that it would have to be pressed downwards until the surface of the land was 2,930 below its present position, before it would attain the average density of the crust of the earth. Likewise at Colába an expansion of the underlying strata until a hill 2,500 feet high had been formed would be requisite to reduce the excessively dense rock that is found here to the average density of 2'8.

There is another consideration to be taken into account. An examination of the soil at Dehra Dún shows that it is alluvium possessing an average density of about 2. If we could make borings it is not probable that we should find a diminution in this density. Therefore to produce a deficiency equivalent to a removal of 2,930 feet of matter of density 2'8, we shall have to suppose that the density remains at its surface value of 2 to the depth of 10,280 feet, and only at this depth returns to 2'8, which is approximately the average density of the crust of the earth. It is for geologists to say how such a state of things could have been brought about.

TIDAL AND LEVELLING OPERATIONS.

Ш

Extracted from the Narrative Report of Captain H. H. Turner, R.E., in charge No. 25 Party (Tidal and Levelling) for season 1903-04.

4. During the year nine self-registering tide gauges recorded the tidal Work of the year. In the office at Dehra Dún the reduction by harmonic analysis of the observations of 1903 of 11 tidal stations has been completed. In England the work of

publication of the tide-tables giving the predicted times and heights of every high and low water for the year 1905 for 40 ports has been in progress.

5. The following table gives a complete list of the 42 ports at which obser-List of Tidal Stations. List of Tidal Stations.

33 having been closed on completion of their registrations.

The permanent stations are shown in italics, the others are minor stations at which only a few years registrations are required.

	Static)ns.		Automatic or personal observations.	Date of commence- ment of observations.	Date of closing of observations.	No. of years of observations.	Remarks.
I	Suez	.•		Automatic	1897	1903 .	7	Closed on 18th Feb- ruary 1904.
2	Perim .	•	• •	Ditto .	1898	1902 .	5	1 uary 1904.
3	Aden.	•		Ditto .	1879	Still working	24	
4	Maskat .	•	• •	Ditto .	1893	1898 .	5	
5	Bushire .	•	• •	Ditto .	1892	1901 .	8	
6	Karáchi •	•		Ditto .	1881	Still working	23	
7	Hanstal .	• -	• •	Ditto .	1874	1875 .	T	Tide tables not pub- lished.
8	Navánagar	•		Ditto .	1874	1875 .	I	S Institution
9	Okha Point	•	• •	Ditto	1874 re-started 1904	1875 •	I	Opened on 22nd January 1904.
10	Porbandar	• •	• •	Personal	1893	1894	2	
10 A	Porbandar		• •	Automati	c 1898	1902 •	5	With certain interrup-
11	Port Albert war).	Victor	(Kathia	Personal	1 8 81	1882 .	I	tions.
11A	Port Albert war).	Victor	(Kathia	Automati	c 1900	1903 -	4	Closed on 21st April 1904.
12	Bhávnagar	• •	•	. Ditto	1889	1894	5	
13	Bombay (A	ollo Ba	ndar)	• Ditto	. 1878	Still workin	g 26	
14	Bombay (Pr	rince's D)ock)	. Ditto	. 1888	Ditto	. 16	Property of Port Trust.
15	Mormugâo	(Goa)	•	• Ditto	. 1884	1889	5	
16	Kárwár	• •	•	• Ditto	. 1878	1883	5	
17	Beypore	• •	•	. Ditto	. 1878	1884	. 6	
18	Cochin	• •	•	. Ditto	. 1886	1892	. 6	
19	Tuticorin	•••	•	. Ditto	• 1 8 88	1893	• 5	

NO, 25 PARTY (TIDAL AND LEVELLING).

	Stations.				Automatic or personal observations		Date of commence- ment of observations.	Date of closing of observations.	No. of years of ob serva tions.	Remarks.
20	Minicoy .	•	•	•	Automati	c	1891	1896 .	5	
21	Galle .	•	•	•	Ditto .	•	1884	1890 .	6	
22	Colombo .	•	•	•	Ditto .		1884	1890 .	6	
23	Trincomalee	•-	•	•	Ditto .	•	1890	1896 .	6	
24	Pámban Pass	•	•	•	Ditto .		1878	1882 ' .	4	
25	Negapatam	•	•	•	Ditto .		1881	1888 .	6	Year 1884-85 is excluded.
26	Madras .	•	•	•	Ditto {		1880 re-started 1895	1890 . Still working	10 9 19	
27	Cocanada .	•	•	•	Ditto .	•	18 86	1891 .	5	
28	Vizagapatam	•	•	•	Ditto .	•	1879	1885 .	6	
29	False Point	•		•	Ditto	.	1881	1885 .	4	
30	Dublat (Saugor I	sla	nd)	•	Ditto		1881	1886 .	5	
31	Diamond Harbor	ur	•	•	Ditto	.	1881	1886 .	5	
32	Kidderpore .	•	•	•	Ditto .	.	1881	Still working	23	
33	Chittagong	•	•	•	Ditto		1886	1891 .	5	
34	Akyab •	•	•	•	Ditto	.	1887	1892 .	5	
35	Diamond Island		•	•	Ditto	•	1895	1899 .	5	
36	Bassein (Burma)	•	•	•	Ditto	•	1902	1903 .	2	Closed on 1st Janu-
37	Elephant Point	•	•	•	Ditto	{	1880 re-started 1884	1881 • 1888 •	1 5 6	ary 1904.
38	Rangoon .		•		Ditto	•	1880	Still working	24	
39	Amherst .	•	•	•	Ditto	•	1880	1886 .	6	
40	Moulmein .	•	•	•	Ditto	•	1880	1886 .	6	
41	Mergui .	•	•	•	Ditto	•	1889	1894 .	5	
42	Port Blair .	•	•	•	Ditto	•	1880	Still working	24	

6. The observatories at Suez, Port Albert Victor and Bassein were closed during the year. At Suez 7 complete

Observatories closed during the year.

during the year. At Suez 7 complete years of observations have been recorded.

At Port Albert Victor only 4 years' observations have been obtained, the usual five-year period being curtailed at the request of the State Engineer, Bhávnagar. At Bassein which is a riverain port, since the erection of the observatory in 1902, much trouble has been experienced owing to the sinking of the piles on which the observatory was built. The observations could not be continued without incurring very heavy expenditure, so that it was decided to close the observatory after a period of two years' observations.

7. A new observatory was erected at Okha Point on the site of the old

New observatory opened.

observatory erected in 1873. The Gulf of Cutch was the scene of the earliest

tidal operations with self-registering tide gauges in India; they were initiated originally with the intention of determining the secular changes in the relative level of the land and sea, and this more particularly in the Gulf of Cutch. Before however the observatories in the Gulf had been finally erected, it was recognised that a system of tidal investigations would be of the greatest value to

both science and commerce. In the years, that have elapsed since 1873, the idea of repeating the operations in the Gulf of Cutch has never been wholly lost sight of, a reconnaissance of the site of the old observatory at Hanstal was made in 1900, but the report was so unfavourable, that the idea of erecting an observatory there was discarded. In October 1903, Captain Turner accompanied by Mr. Shaw visited the site of the old observatory at Okha. The old cylinder and well of the former observatory were found to be intact, and after reconnoitring the coast, it was decided that no better spot could be selected than the original site. The original observatory with its cylinder stood on dry land well

and well of the former observatory were found to be intact, and after reconnoitring the coast, it was decided that no better spot could be selected than the original site. The original observatory with its cylinder stood on dry land well above high water mark and the cylinder was connected with the sea by means of a 2" iron pipe acting as a syphon from about half tide. The pipe was 175 feet long running out to the lowest low water mark, at this point a flexible pipe was attached to the iron pipe by means of a brass connecting arrangement. The extreme end of this flexible pipe having a rose attached was supported 6 feet from the bottom of the sea by a small buoy fixed to an anchor by a chain, and this buoy again was chained to a mark buoy on the surface of the water. The whole being held in position at a point where there was 20 feet of water at lowest spring tides. The highest point of the iron pipe was close to the cylinder of the tide gauge, and here a stop cock was placed to enable air to be expelled from the pipe. The observatory cabin in which the tide gauge was placed, was built on a platform directly over the cylinder. The observations at Okha taken in 1874 were entirely successful, so that it seemed that no better plan could be devised than to exactly follow out the former system. This has been done, the only alteration being that the syphon pipe now passes into the cylinder just below the level of the stop cock and thence vertically down to the bottom of the cylinder instead of as formally passing down outside the cylinder and in at the bottom. This change was necessary, as without destroying the brick well by which the cylinder is surrounded the pipe could not be passed down outside the cylinder. Mr. Shaw superintended the work of erection of the observatory, the materials for its construction being first collected in Karáchi by him. He remained at Okha till the end of January, when the gauge was successfully started. The three bench-marks erected in 1873 close to the observatory were all found to be in good preservation, and their values inter se accorded with their old values. The gauge has been given the same zero with reference to bench-mark A, as was done in 1874. A line of levelling was run from the old observatory bench-marks to a bench-mark at Gadechi 10 miles distant and no change in their respective heights appears to have taken place.

The mean sea-level as obtained from observations from the 23rd January to the 31st August 1904 exclusive of a break of 18 days in March has been calculated and compared with the mean sea-level of 1874-75. If bench-mark A has not altered in height with reference to the surrounding country, then the mean sealevel of 1904 may be regarded as identical with that of 1874-75.

The following data show the difference of mean sea-level in 1874-75 and 1904:---

·						Ft.
M. S. L. in 1874-75 above zero of gauge		•	•	•	=	9 •66
Zero of gauge in 1874-75 below B. M. A.	•	•	•	•	=	20.07
M. S. L. in 1904 (6 ¹ / ₂ months observations)	above	zero	of ga	uge	=	9'7 I
Zero of gauge in 1904 below B. M. A.	•	•	•		=	20 [.] 07
M. S. L. in 1874-75 below B. M. A.	•	•	•	•	=	10.41
M. S. L. in 1904 below B. M. A.	•	•	•	•	=	10.3Q
Difference of M.S.L	•	•	•	•	≍	0.02

Digitized by Google

U

NO. 25 PARTY (TIDAL AND LEVELLING).

From the above it would appear that no movement of land with reference to the sea has taken place along the Gulf coast in the last 30 years. Before however any final conclusion can be arrived at, it is necessary that the observations should extend over a period of at least one complete year, and that the height of the bench-marks near the observatory should be finally checked with the bench-marks further inland.

8. The project for the erection of a tidal observatory at Suakim in Proposals for erection of new observatories. The Government of India have granted funds, and have obtained the sanction and co-operation of the Siamese Government to the erection of two observatories in the Malay Peninsula. The idea is to erect an observatory on either side of the peninsula, and by running a line of precise levelling from one to the other, to obtain the difference, if any, of mean sea-level in the Bay of Bengal and China Sea, these being connected respectively with the Indian and Pacific Oceans.

9. In addition to the automatic registrations made at the stations Personal tidal observations. at the following closed tidal stations; Bhávnagar, Chittagong, Akyab and Moulmein with the object of comparing actual times and heights of high and low water with predicted times and heights.

10. All the tidal observatories were inspected during the past year. Inspection of observatories. Portable meteorological instruments were taken on the tours of inspection and

compared with those working locally.

11. The following is a description of the working of the several tidal Working of tidal observatories. Working of tidal observatories.

stations round the coast to Burma.

12. This observatory was inspected by Mr. Shaw between the 17th and 22nd February 1904, and everything Suez. found in order. On the latter date the

tide gauge was dismantled, and all the instruments were packed ready for despatch to India. Seven complete years of tidal registrations have been obtained at this port by the self-registering tide gauge, during this period Captain N. Fleri has been indefatigable in carrying on the observatory work; there having been no serious break in the record during these seven years testifies to the care with which the several instruments were attended. During the year 1903, three short breaks of a few hours, due to the stoppage of the gauge clock, occurred in the tidal records. There were no interruptions in the records of the auxiliary instruments and all were in good order.

In addition to Captain Fleri our thanks are due to Captain J. Falconer, Director of the Port of Suez, who has always given his ready assistance and supervision over the work of the observatory.

13. This observatory was inspected by Mr. Shaw between the 24th Aden. February and 5th March 1904. The tide gauge was found to be greatly in

need of cleaning, the clerk in charge having been very remiss in looking after his instruments. There were several short and unimportant interruptions in the record of the tide gauge during the year, there were also several breaks in the registrations of the auxiliary instruments. All the instruments were thoroughly cleaned and put in good working order. On the 17th March 1904 the observatory, which since it was first erected, had been under the supervision of the Port Officer, was handed over by him to the Port Engineer, and that officer in future will supervise the work of the observatory.

14. Mr. Shaw inspected this observatory between the 15th and 30th Karáchi. November 1903. The instruments were all found in good working order, but in need of cleaning. There were only two short interruptions in the registration of the self-registering tide gauge during the year, these both occurred within the same 24 hours, and were due to the communication between the sea and cylinder being choked with mud. The S. R. anemometer has been several times out of order, and it is proposed to change the instrument at the next inspection. The large anemometer belonging to the Port Trust, which had also been out of order, was replaced by the large anemometer by Legé & Co. sent from Perim. The clock of the S. R. aneroid has not been working satisfactorily for some time, this will also be changed at the next inspection.

15. This is a new observatory erected on the site of the old one demolished

Okha Point.

in 1875. The old cylinder and well were found to be in excellent preservation and

were utilised for the new observatory. The site for the observatory was finally fixed by Captain Turner on the 1st November 1903, and the erection was carried out by Mr. Shaw, all materials having been brought from Karáchi. The S. R. tide gauge started working on the 22nd January 1904, but the record was broken on the 3rd March, owing to the rose of the inlet pipe becoming broken by entanglement with the buoy chain. The repairs to the piping were completed on the 20th March and the registrations of the S. R. tide gauge were resumed from that date, since then there has been no break in the record. The auxiliary instruments were started working at the beginning of March, and have continued to work satisfactorily. It was found on trial that the universal sundial which was supplied for the purpose of checking the time was too small, and not sufficiently sensitive to register time within 3 minutes, so that pending the erection of a sundial of Colonel Strahan's pattern, the observatory clerk has had to visit Dwarka once every week in order to check his chronometer time with the tide gauge time at Dwarka. For the description of the manner in which this S. R. tide gauge is worked, see para. 7 of this report.

16. This observatory was finally inspected and closed by Surveyor Dhondu Vinayek on the 19th April 1904. The

S. R. tide gauge worked throughout the year without a break in its registrations. The auxiliary instruments have also worked satisfactorily. The observatory was opened in January 1900, so that four complete years of tidal registrations have been obtained. My thanks are due to the State Engineer, Bhávnagar, who has kindly supervised the work since the observatory was erected.

17. This observatory was inspected by Captain Turner between the 9th Apollo Bandar (Bombay.) accumulated on the gearing and bearings. There have been two breaks in the record of the S. R. tide gauge during the year both of less than 24 hours duration and both due to the stopping of the gauge clock. The curves registered for the last two years have been broken by small irregularities at intervals, along the curves caused by the drum continuing to rotate, while the U 2 pencil stood still. The initial cause of the pencil standing still could not be discovered, but it was evidently due to some wear and tear on the gearing connecting the float with the pencil. In consequence, it was decided to replace the tide gauge by another No. 26 which had been lying in store with the Port Engineer for several years, the same clock only being utilised. The gauge had been working without intermission for 15 years. The old gauge No. 2 was dismantled on the 13th February at 2 P. M. and the new one No. 26 was erected and started at 6-20 P. M. the same evening since which time it has worked satisfactorily.

18. This observatory was inspected by Captain Turner between the 10th

Prince's Dock, Bombay. were several short interruptions during the year due to the wire to which the pencil is attached breaking. The instrument was cleaned and left in adjustment.

19. This observatory was inspected by Captain Turner between the 17th and 21st February 1904. The instruments were found clean, and in good

working order. The well was pumped out and the sluice thoroughly cleaned. There were no interruptions in the record of the S. R. tide gauge, nor in those of the auxiliary instruments during the year. The instruments were all cleaned and left in adjustment.

20. This observatory was inspected by Captain Turner between the 10th Ridderpore. and 14th December 1903. The selfregistering tide gauge and anemometer

were both working and in good order, the self-registering aneroid had, however, stopped a few days previous. No interruptions in the record of the tide gauge occurred during the year. Of the auxiliary instruments the anemometer had worked without a break and the aneroid had only failed to register from the 1st December. The instruments were all cleaned and left in adjustment. 21. This observatory was visited by Captain Turner on the 13th January

Bassein. Bas

Officer from the 1st January, but as the float and band were still in position zero measurements were taken to a rising and falling tide. The tide gauge was then dismantled and the observatory finally closed. No break in the record of the tide gauge occurred during the year. As the clock had been stopped before the visit of the inspecting officer, there were no means of testing the correctness of time kept during the year; this is unfortunate, as at the previous inspection the clock was found to be over 10 minutes fast. There was no break in the registrations of the auxiliary instruments during the year. The observatory was started on the 1st January 1902, so that we have only two complete years of observations from which to predict future tides. Since the observatory was first erected, large sums of money have been expended in trying to keep the piles, on which the cabin stands, from collapsing and the observations could not be continued without erecting an entirely new structure; as the Port authorities were not willing to incur this expense, there was no alternative, but to close the observatory.

22. This observatory was inspected by Captain Turner between the 19th Rangoon. and 24th December 1903. The selfregistering tide gauge was working satisfactorily, though very much in need of cleaning. There was only one

break in the registrations of the tide gauge during the year, this was of four hours' duration, and was due to the pencil chain breaking. The gauge clock which had been losing from 2 to 4 minutes daily was rated correctly. There was a break of 6 days in the record of the self-registering anemometer, and one of 8 hours in that of the self-registering aneroid, both due to the stoppage of their respective clocks. The instruments were all cleaned and left in adjustment.

23. This observatory was inspected by Captain Turner between 30th December 1903 and 8th January 1904.

The instruments were working satisfactorily and the observatory was clean and tidy. No interruption has occurred during the year in the record of either the tide gauge or auxiliary instruments. The instruments were all cleaned and left in adjustment.

24. As in former years each tidal observatory has been under the direct Supervision of Observatories. Supervision of a responsible authority, the Port Officer or Engineer where possible.

Thanks are due to these officers for the careful way in which their supervision has been exercised, and for the interest taken by them in the operations.

25. The tidal diagrams together with the diagrams of the auxiliary instru-Tidal diagrams and Daily Reports. ments have been regularly forwarded

from each observatory to the Tidal and Levelling office at Dehra Dún. The clerks in charge of the several observatories have also sent daily reports of the working of the tide gauges in their charge.

26. The tidal observations for a year at 11 stations have been reduced

Tidal constants.

and the tabulated values of the tidal constants thus derived are appended.

There are no arrears.

VALUES OF THE TIDAL CONSTANTS, SUEZ, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Suez; and also the *mean* values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations.

$S \begin{cases} H = R = \\ \kappa = \zeta = \\ \gamma 1^{0} \cdot 99 \\ S_{2} \begin{cases} H = R = \\ \kappa = \zeta = \\ \gamma 455 \\ \kappa = \zeta = \\ 12^{\circ} 26 \\ S_{4} \begin{cases} H = R = \\ \gamma 455 \\ \kappa = \zeta = \\ 12^{\circ} 26 \\ \kappa = \\ \gamma 5^{\circ} 68 \\ R = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 02 \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 02 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ R = \\ \gamma 074 \\ \zeta = \\ \gamma 6^{\circ} 68 \\ R = \\ \gamma 074 \\ R = \\ \gamma 076 \\ R = \\ \gamma 077 \\ \gamma 077 \\ R = \\ \gamma 077 \\$
$M_{s} \begin{cases} R = \begin{bmatrix} 0 & 0 & 18 \\ \zeta = & 134^{\circ} & 05 \\ H = & 0 & 17 \\ \kappa = & 42^{\circ} & 57 \end{cases} P_{1} \begin{cases} R = & 0.44 \\ \zeta = & 315^{\circ} & 0.09 \\ H = & 0.44 \\ \kappa = & 125^{\circ} & 22 \end{cases} P_{2} \begin{cases} R = & 0.67 \\ \zeta = & 358^{\circ} & 01 \\ H = & 0.62 \\ \kappa = & 236^{\circ} & 04 \end{cases} (M_{s}K_{1})_{s} \begin{cases} R = & 0.15 \\ \zeta = & 192^{\circ} & 82 \\ H = & 0.17 \\ 323^{\circ} & 64 \end{cases}$

Short Period Tides.

$M_{4}\begin{cases} R = & 0.29\\ \zeta = & 267.90\\ H = & 0.27\\ \kappa = & 145^{\circ}.93 \end{cases}$	$J_{1}\begin{cases} R = & 0006\\ \zeta = & 143^{\circ}.75\\ H = & 007\\ \kappa = & 191^{\circ}.02 \end{cases}$	$R_{3}\begin{cases} R = \zeta = \zeta = H = \zeta = R_{3} \end{cases}$	=		$ \begin{array}{c} = & \cdot 013 \\ = & 6^{\circ} \cdot 13 \\ = & \cdot 013 \\ = & 52^{\circ} \cdot 36 \end{array} $
	Long Per	iod Tides.			_
		R	ζ	н	ĸ

·084

•08Ġ

•100

•472

·327

1 59°39

234.32

135.31

42.21

292**.2**6

Short Period Tides.-contd.

VALUES OF THE TIDAL CONSTANTS, ADEN, 1903.

•

٠

.

.

•

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Aden; and also the *mean* values of the amplitudes (H) and of the epochs (x) for each particular tide evaluated from the 1903 Observations.

• $A_0 = 5.964$ feet.										
$S_{1} \begin{cases} H = R = & 0.85 \\ \kappa = \zeta = & 164^{\circ}.07 \\ S_{9} \begin{cases} H = R = & 0.11 \\ \kappa = \zeta = & 258^{\circ}.59 \\ R = \zeta = & 258^{\circ}.59 \\ S_{6} \begin{cases} H = R = & 0.07 \\ \kappa = \zeta = & 220^{\circ}.24 \\ R = & \zeta = & 220^{\circ}.24 \\ R = & \zeta = & 220^{\circ}.24 \\ R = & 102^{\circ}.40 \\ R =$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{1} \begin{cases} R = & \cdot 126 \\ \zeta = & 141^{\circ} \cdot 57 \\ H = & \cdot 155 \\ \kappa = & 34^{\circ} \cdot 64 \\ R = & \cdot 052 \\ \zeta = & 238^{\circ} \cdot 42 \\ H = & \cdot 046 \\ \kappa = & 219^{\circ} \cdot 22 \\ R = & \cdot 446 \\ \zeta = & 134^{\circ} \cdot 45 \\ H = & \cdot 209^{\circ} \cdot 60 \\ R = & \cdot 120^{\circ} \cdot 60 \\$	$ \begin{array}{c} \mathbf{R} = & \mathbf{R} \\ \mathbf{R} \\ \mathbf{R} = & \mathbf{R} \\$							

Long Period Tides.

					R	ζ	н	ĸ
Lunar Monthly "Fortnightly Luni-Solar " Solar-Annual "Semi-Annual	Tide ,, ,, ,, ,,	• • •	• • •	•	*037 *022 *037 *301 *149	145.66 162.56 210.61 88.00 314.85	·033 ·035 ·036 ·301 ·149	359'37 68'85 270'75 7'84 154'53

Lunar Monthly "Fortnightly Luni-Solar",

" Semi-Annual

Luni Solar " Solar-Annual

٦.

Tide

,,

"

"

"

13.55 141.52 196.20

322.08

ī32 o**i**

.074

•136

.096

•472

VALUES OF THE TIDAL CONSTANTS, KARÁCHI, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Karáchi; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations :--

	$A_0 = 7^{-1}$	282 feet.	
$S_{1} \begin{cases} H = R = & 084 \\ \kappa = \zeta = & 064 \\ 176^{\circ}.39 \\ 964 \\ 323^{\circ}.62 \\ S_{2} \begin{cases} H = R = & 064 \\ \kappa = \zeta = & 964 \\ 323^{\circ}.62 \\ S_{3} \begin{cases} H = R = & 007 \\ \kappa = \zeta = & 007 \\ 297^{\circ}.68 \\ S_{4} \end{cases} \begin{cases} H = R = & 007 \\ \kappa = \zeta = & 007 \\ 297^{\circ}.68 \\ S_{5} \end{cases} \begin{cases} H = R = & 002 \\ \kappa = \zeta = & 002 \\ 352^{\circ}.57 \\ H = & 002 \\ 352^{\circ}.57 \\ S_{4} \end{cases} \begin{cases} R = & 073 \\ 97^{\circ}.07 \\ 002 \\ S_{5} \end{cases} \\ R = & 002 \\ 352^{\circ}.57 \\ 002 \\ S_{5} \end{cases} \\ R = & 002 \\ 351^{\circ}.94 \\ S_{5} \end{cases} \\ R = & 042 \\ S_{5} $ \\ R = & 042 \\ S_{5} \end{cases} \\ R = & 042 \\ S_{5} $M_{6}\begin{cases} R = & 0.048 \\ \zeta = & 14^{\circ}.33 \\ 0.043 \\ R = & 0.043 \\ 0.05 \\ R = & 0.05 \\ 0.05 \\ 0.05 \\ R = & 0.05 \\ 0.05 \\ 0.05 \\ R = & 0.05 \\ 0.0$	$Q_{1} \begin{cases} R = & & & & & & & & & & & & & & & & & &$	$ \begin{array}{c} R = & 143 \\ \zeta = & 338^{\circ}65 \\ H = & 143 \\ \kappa = & 340^{\circ}15 \\ \kappa = & 340^{\circ}15 \\ \kappa = & 309^{\circ}93 \\ \kappa = & 328^{\circ}93 \\ \kappa = & 328^{\circ}59 \end{array} $	
)			i (

Short Period Tides.

Long Period Tides.

		<u></u>	<u> </u>		R	ζ.	H	K.
Lunar Monthly Tid ,, Fortnightly ,, Luni-Solar ,, ,, Solar-Annual ,, ,, Semi ,, ,,	e.	• • •	• • •	•	•029 •032 •015 •236 •289	° 27 5'47 7°'43 160'08 176'09 313'4 2	•026 •050 •014 •236 •289	• 128·38 335·12 218·73 95·87 152·98

VALUES OF THE TIDAL CONSTANTS, PORT ALBERT VICTOR, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Port Albert Victor; and also the *mean* values of the amplitudes (H) and of the epochs (x) for each particular tide evaluated from the 1903 Observations.

Shor	t Per	riod 1	Tides.

$A_0 = 9.871$ feet.									
$S_{1} \begin{cases} H = R = \\ \kappa = \zeta \neq \\ H = R = \\ \kappa = \zeta \neq \\ \kappa = \zeta \neq \end{cases}$	°086 187°•57 1°138 82°·34	$M_{6} \begin{cases} R = & 122 \\ \zeta = & 299^{\circ} \cdot 16 \\ H = & 109 \\ \kappa = & 124^{\circ} \cdot 12 \end{cases}$	$[n^{21}]H = [n^{170}]$	$T_{3}\begin{cases} R = & 158\\ \zeta = & 92^{\circ}53\\ H = & 158\\ \kappa = & 94^{\circ}04 \end{cases}$					

Short Period Tides-contd.

Long	Period	Tides.
------	--------	--------

					R	ζ	Н	ĸ
Lunar Monthly ,, Fortnightly Luni-Solar ,, Solar-Annual ,, Semi-Annual	Tide ,,, ,, ,,	• • •	• • •	• • •	° •041 •020 •041 •0 9 2 •295	359°·31 61·71 140·78 200·08 309·06	•036 •032 •040 •092 •295	• 212 [•] •05 326:07 199:12 119:85 148:59

VALUES OF THE TIDAL CONSTANTS, BOMBAY (APOLLO BANDAR), 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Bombay (Apollo Bandar); and also the *mean* values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations :—

Short Period Tides.

	A ₀ =10;	321 feet.		
$S_{1} \begin{cases} H = R = & 0.061 \\ \kappa = \zeta = & 1.84^{0.55} \\ S_{9} \begin{cases} H = R = & 0.12 \\ \kappa = \zeta = & 193^{0.81} \\ \kappa = \zeta = & 193^{0.81} \\ \kappa = \zeta = & 0.05 \\ \kappa = \zeta = & 80^{0.34} \\ S_{8} \begin{cases} H = R = & 0.03 \\ \kappa = \zeta = & 120^{0.65} \\ \kappa = & \zeta = & 0.65 \\ \kappa = $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$Q_{1}\begin{cases} R = & 12\\ \zeta = & 157^{\circ}0\\ H = & 12\\ \kappa = & 53^{\circ}0\\ R = & 11\\ \zeta = & 342^{\circ}0\\ H = & 324^{\circ}0\\ R = & 100\\ \zeta = & 224^{\circ}0\\ R = & 100\\ \zeta = & 224^{\circ}0\\ R = & 100\\ \zeta = & 224^{\circ}0\\ R = & 100\\ \kappa = & 313^{\circ}0\\ R = &\\ R = &\\ \kappa = &\\ \kappa = &\\ \kappa = &\\ \kappa = & 12^{\circ}0\\ R = & 11\\ \kappa = & 12^{\circ}0\\ R = & 11\\ \kappa = & 12^{\circ}0\\ R = & $	$T \begin{cases} \zeta = \\ H = \\ \kappa = \\ $	223 21°:37 223 22°:88 143 100°:28 42°:02 042 54°:72 041 112°:97 120 32°:74 115 269°:08 027 327°:60 025 358°:39

$M_{3} \begin{cases} R = & 0.088 \\ \zeta = & 116^{\circ}.24 \\ H = & 0.083 \\ \kappa = & 28^{\circ}.85 \\ R = & 0.118 \\ \zeta = & 101^{\circ}.43 \\ H = & 0.16 \\ \kappa = & 344^{\circ}.92 \end{cases} P_{1} \begin{cases} R = & 421 \\ \zeta = & 233^{\circ}.62 \\ R = & 421 \\ \kappa = & 343^{\circ}.86 \\ 0.086 \\ R = & 0.086 \\ 0.086 \\ R = & 0.086 \\ 0.086 $	H = (2, 3, 3, 3, 3, 1
---	---

Short Period Tides-contd.

Long	Period	Tides.
------	--------	--------

			_				
•				R	ζ	н	ĸ
Lunar Monthly Tid	e.	•	•	* 025	93°97	'022	306.67
"Fortnightly "	•	•	•	•015	101.80	·024	6.13
Luni-Solar ,, "	•	•	•	•006	340.72	•006	38.98
Solar-Annual "	•	•	•	·085	195.49	·085	115.25
" Semi-Annual "	•	•	•	·2 59	326.64	•259	166.12

VALUES OF THE TIDAL CONSTANTS, BOMBAY (PRINCE'S DOCK), 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Bombay (Prince's Dock); and also the *mean* values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations :—

Short Period Tides.

$A_{0} = 8^{\circ} 290 \text{ feet.}$ $S_{1} \begin{cases} H = R = & 0.065 \\ \kappa = \zeta = & 182^{\circ} 200 \\ S_{1} \end{cases} \begin{pmatrix} R = & 0.055 \\ \kappa = \zeta = & 1.602 \\ H = & 0.04 \\ R = & 0.04 $	
$S_{3} \begin{cases} \kappa = \zeta = \\ \kappa = \zeta = \\ 017 \\ S_{4} \begin{cases} H = R = \\ \kappa = \zeta = \\ 017 \\ \kappa = \zeta = \\ 213^{\circ} \cdot 22 \\ 006 \\ \kappa = \zeta = \\ 145^{\circ} \cdot 49 \\ \kappa = \zeta = \\ 145^{\circ} \cdot 49 \\ \kappa = \zeta = \\ 35^{\circ} \cdot 54 \\ \kappa = \zeta = \\ 35^{\circ} \cdot 54 \\ \kappa = \zeta = \\ 35^{\circ} \cdot 54 \\ \kappa = \zeta = \\ 35^{\circ} \cdot 54 \\ \kappa = \zeta = \\ 35^{\circ} \cdot 54 \\ \kappa = 49^{\circ} \cdot 45 \\ \kappa = 49^{\circ} \cdot 48 \\ \kappa = 115^{\circ} \cdot 30 \\ \kappa = 49^{\circ} \cdot 48 \\ \kappa = 45^{\circ} \cdot 48 \\ \kappa = 45^{\circ} \cdot 48 \\ \kappa = 1127 \\ \kappa = 1127 \\ \kappa = 1127 \\ \kappa = 39^{\circ} \cdot 21 \\ \kappa = 317^{\circ} \cdot 78 $	$\begin{pmatrix} n = \\ \kappa = \\ 23^{\circ} 50 \\ R = \\ 126 \end{pmatrix}$

				R	ζ	Н	ĸ
Lunar Monthly Tide	•	•		·041	8°2.22	•ივნ	294·92
" Fortnightly "	•	•	•	•015	65.76	[.] 024	330.03
Luni-Solar " "	•	•	•	•011	6'49	.011	64 [.] 75
Solar-Annual "	•	•	•	[.] 076	178.21	.07 6	97 .97
" Semi-Annual "	•	•	•	[.] 295	324.35	•295	163.87

Long Period Tides.

VALUES OF THE TIDAL CONSTANTS, MADRAS, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observtions at Madras; and also the *mean* values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations.

		$A_0 = 2$	334 fee t.						
$S_{1} \begin{cases} H = R = \\ \kappa = \zeta = \\ 81^{\circ} \cdot 13 \\ S_{2} \begin{cases} H = R = \\ \kappa = \zeta = \\ 459 \\ \kappa = \zeta = \\ 267^{\circ} \cdot 54 \\ S_{4} \begin{cases} H = R = \\ \kappa = \zeta = \\ \gamma	$M_{8} \begin{cases} H = \\ \kappa = \\ R = \\ R = \\ H = \\ \kappa = \\ R $	•006 254°.06 •002 228°.01 •001 357°.01 •078 212°.11 •096 321°.37 •261 144°.30 •295 335°.97 •092 65°.88 •122 268°.86 •098 165°.34 •098 335°.60 •098 335°.60 •098 165°.34 •098 335°.60 •098 335°.60 •098 335°.60 •098 335°.60 •098 335°.60 •098 •		$= 166^{\circ} \cdot 29$ $= 010$ $= 03^{\circ} \cdot 13$ $= 052$ $= 273^{\circ} \cdot 70$ $= 255^{\circ} \cdot 61$ $= 231^{\circ} \cdot 47$ $= 000$ $= 175^{\circ} \cdot 32$ $= 000$ $= 175^{\circ} \cdot 32$ $= 000$ $= 000$ $= 000$ $= 000$ $= 000$ $= 000$ $= 000$ $= 000$	$(MS)_{4}\begin{cases} R = \zeta = H = \zeta	$= \frac{.019}{165^{\circ}.60}$ = 018 = 223^{\circ}.35			
Long Period Tides.									
			R	ζ	Н	ĸ			
Lunar Monthly T id	e	•	.0 29	264 [°] 17	•026	116.29			
"Fortnightly "	• •	•	·006	211.06	.009	114•78			

	Short	Period	Tides.
--	-------	--------	--------

Lunar Monthly Tide	•	•	•	.0 29	264 [°] 17	•026	116.20
" Fortnightly "	•	•	•	•00б	211.00	•009	114•78
Luni-Solar ", "	•	•	•	•03 3	20 0°30	•032	2 5 8'05
Solar-Annual "	•	•	•	•43 7	284.21	' 437	204.25
" Semi-Annual "	•	•	•	•376	284.17	[.] 376	123.65
			,		L J		•

VALUES OF THE TIDAL CONSTANTS, KIDDERPORE, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Kidderpore; and also the *mean* values of the amplitudes (H) and of the epochs (α) for each particular tide evaluated from the 1903 Observations.

$A_0 = 10.711$ feet.										
$S_{1} \begin{cases} H = R = & .083 \\ \kappa = \zeta = & .85^{\circ}.93 \\ H = R = & .567 \\ \kappa = \zeta = & .98^{\circ}.96 \end{cases}$	$M_{6} \begin{cases} R = & 178 \\ \zeta = & 133^{\circ}.69 \\ H = & 160 \\ \kappa = & 322^{\circ}.06 \end{cases}$	$Q_{1} \begin{cases} R = & .010 \\ \zeta = & .03^{\circ} \cdot 47 \\ H = & .012 \\ \kappa = & .012 \\ 1^{\circ} \cdot 17 \end{cases}$	$T_{2} \begin{cases} R = 201 \\ \zeta = 132^{\circ}.57 \\ H = 201 \\ \kappa = 134^{\circ}.13 \end{cases}$							
$S_{4} \begin{cases} H = R = & .095 \\ \kappa = \zeta = & 108^{\circ}.04 \\ H = R = & .005 \\ \kappa = \zeta = & 331^{\circ}.93 \end{cases}$	$M_{8} \begin{cases} R = 0.078 \\ \zeta = 144^{\circ}.97 \\ H = 0.067 \\ \kappa = 276^{\circ}.14 \end{cases}$	$L_{2}\begin{cases} R = & 268\\ \zeta = & 91^{\circ}26\\ H = & 240\\ \kappa = & 73^{\circ}41 \end{cases}$	$(MS)_{4}\begin{cases} R = & .720\\ \zeta = & .132^{\circ}.98\\ H = & .695\\ \kappa = & .75^{\circ}.77\\ R = & .75^{\circ}.77\end{cases}$							
$S_{g} \begin{cases} H = R = 0.004 \\ \kappa = \zeta = 0.004 \\ 217^{\circ}.15 \end{cases}$	$O_{1} \begin{cases} R = & 168\\ \zeta = & 262^{\circ}.92\\ H = & 207\\ \kappa = & 12^{\circ}.75 \end{cases}$	$N_{2} \begin{cases} R = 713 \\ \zeta = 313^{\circ} 17 \\ H = 688 \\ \kappa = 43^{\circ} 82 \end{cases}$	$(2SM)_{2}\begin{cases} R = & ^{\circ 090} \\ \zeta = & 314^{\circ \cdot 18} \\ H = & ^{\circ 087} \\ \kappa = & 11^{\circ \cdot 39} \\ R = & ^{\circ 154} \end{cases}$							
$M_{1} \begin{cases} R = & 051 \\ \zeta = & 333^{\circ.64} \\ H = & 048 \\ \kappa = & 354^{\circ.12} \end{cases}$	$ \mathbf{K}_{1} \begin{cases} R = 360 \\ \zeta = 222^{\circ}.99 \\ H = 406 \\ R = 54^{\circ}.64 \end{bmatrix} $	$\lambda_2 \begin{cases} \mathbf{R} = & \dots \\ \boldsymbol{\zeta} = & \dots \\ \mathbf{H} = & \dots \\ \boldsymbol{\kappa} = & \dots \\ \boldsymbol{R} \end{cases}$	$2N_{2} \begin{cases} \zeta = 169^{\circ}.76 \\ H = 148 \\ \kappa = 48^{\circ}.28 \end{cases}$							
$M_{2} \begin{cases} R = 3.961 \\ \zeta = 113^{\circ}.59 \\ H = 3.819 \\ \kappa = 56^{\circ}.38 \\ C R = 0.062 \end{cases}$	$K_{2} \begin{cases} R = 367 \\ \zeta = 250^{\circ} \cdot 20 \\ H = 488 \\ \kappa = 93^{\circ} \cdot 13 \\ 93^{\circ} \cdot 13 \end{cases}$	$ \begin{array}{c} $	$ (M_{2}N)_{4} \begin{cases} R = 319 \\ \zeta = 351^{\circ}.66 \\ H = 297 \\ \kappa = 25^{\circ}.11 \\ (R = 146) \end{cases} $							
$M_{3} \begin{cases} \zeta = 50^{\circ} \cdot 98 \\ H = 059 \\ \kappa = 325^{\circ} \cdot 17 \end{cases}$	$P_{1} \begin{cases} R = & `147 \\ \zeta = & 231^{\circ}.78 \\ H = & `147 \\ \kappa = & 42^{\circ}.06 \\ R = & '036 \end{cases}$	$ \begin{array}{c} \mu_{9} \\ H = \\ R = \\ R = \\ R = \\ R = \\ 176^{\circ} \cdot 35 \end{array} $	$ \begin{pmatrix} M_{2}K_{1} \end{pmatrix}_{3} \begin{cases} R = 261^{\circ} \cdot 20 \\ C = 261^{\circ} \cdot 20 \\ R = 35^{\circ} \cdot 64 \\ C = 39 \end{cases} $							
$M_{4} \begin{cases} R = & .830 \\ \zeta = & .48^{\circ}.59 \\ H = & .771 \\ \kappa = & .34^{\circ}.17 \end{cases}$	$J_{1} \begin{cases} R = & 0.036 \\ \zeta = & 337^{\circ.06} \\ H = & 0.043 \\ \kappa = & 22^{\circ.15} \end{cases}$	$R_{2} \begin{cases} R = & \dots \\ \zeta = & \dots \\ H = & \dots \\ \kappa = & \dots \end{cases}$	$ \begin{pmatrix} (2M_{3}K_{1})_{3} \\ H = \\ \kappa = \\ & \kappa = \\ & 243^{\circ}.71 \\ & \cdot 041 \\ & 297^{\circ}.64 \end{pmatrix} $							

Short Period Tides.

Long Period Tides.

				R	ζ	Н	ĸ
Lunar Monthly Tide ,, Fortnightly ,, Luni-Solar ,, ,, Solar-Annual ,, ,, Semi-Annual ,,	• • •	• • •	• • •	·327 ·206 ·918 2*443 ·850	° 147'22 124'84 343'11 247'54 181'08	•290 •325 •885 2•443 •850	° 359'35 27'97 40'32 167'26 20'52

VALUES OF THE TIDAL CONSTANTS, RANGOON, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Rangoon; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations.

Short Period	Tides.
--------------	--------

		$A_0 = 10$	9 ^{.259} feet.	 	
$S_{1} \begin{cases} H = R = \\ \kappa = \zeta = \\ S_{2} \end{cases} \begin{cases} H = R = \\ \kappa = \zeta = \\ \kappa = \zeta = \\ S_{4} \end{cases} \begin{cases} H = R = \\ \kappa = \zeta = \\ \kappa = \zeta = \\ \kappa = \zeta = \end{cases}$	*107 127 ⁰ •14 2*173 165 ^{0•} 65 *087 252 ^{0•} 65 *008 29 ^{0•} 40	$M_{s} \begin{cases} R = 250^{\circ.82} \\ \zeta = 250^{\circ.82} \\ R = 243 \\ \kappa = 80^{\circ.79} \\ \zeta = 320^{\circ.99} \\ R = 320^{\circ.99} \\ R = 94^{\circ.28} \end{cases}$	$Q_{1}\begin{cases} R = \\ \zeta = \\ H = \\ \kappa = \\ L_{2}\begin{cases} R = \\ \zeta = \\ H = \\ \kappa = \end{cases}$	 $T_{s}\begin{cases} R = \zeta = \zeta = H = \zeta = R = \zeta = R = 0 \\ R = \zeta = R = 0 \\ R$	·320 166°•47 •320 168°•05 •453 260°•49 •436 203°•82
	<u>.</u>				X 2

	$M_{1}\begin{cases} R = \\ \zeta = \\ H = \\ \kappa = \\ K = \\ M_{2} \end{cases} \begin{pmatrix} R = \\ K = \\ H = \\ \kappa = \\ K = \\$	$ \begin{array}{c} 12^{\circ,91} \\ 030 \\ 33^{\circ,67} \\ 6^{\circ,245} \\ 83^{\circ,64} \\ 6^{\circ,021} \\ 26^{\circ,96} \\ 036 \\ 07^{\circ,29} \\ 034 \\ 22^{\circ,27} \\ 034 \\ 22^{\circ,27} \\ 485 \\ 76^{\circ,45} \\ 451 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$= \dots 2N_{3}$ $= \dots 2N_{3}$ $= \dots 2N_{3}$ $= 1214 (M_{3}N),$ $= 139^{\circ}.76 (M_{3}N),$ $= 35^{\circ}.94 (M_{3}K_{1}),$ $= 515 (M_{3}K_{1}),$ $= \dots (2M_{2}K_{1})$	$\begin{cases} $
--	--	--	---	--	--

Short Period Tides-contd.

LUNY FEFILUE LIES	Long	Perioa	l Tides.
-------------------	------	--------	----------

						R	ζ	H	κ
Lunar Monthly ,, Fortnightly Luni-Solar ,, Solar-Annual ,, Semi-Annual	2) 2)))	• • •	• • •	• • •	•	*170 *139 *475 1*354 *151	162 ^{0.} 71 141 [.] 80 350 [.] 31 237 [.] 35 225 [.] 41	*151 *219 *458 1*354 *151	14 ^{0.} 56 44.36 46.98 157.04 64.81
• <u>•</u> ••••••••••••••••••••••••••••••••••									. <u></u>

VALUES OF THE TIDAL CONSTANTS, BASSEIN, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Bassein; and also the mean values of the amplitudes (H) and of the epochs (κ) for each particular tide evaluated from the 1903 Observations.

	A , = 9 'o	13 feet.		
$S_{1} \begin{cases} H = R = \\ \kappa = \zeta = \\ 33^{\circ} \cdot 25 \end{cases}$ $S_{2} \begin{cases} H = R = \\ \kappa = \zeta = \\ 739 \end{cases}$ $S_{4} \begin{cases} H = R = \\ \kappa = \zeta = \\ 180^{\circ} \cdot 62 \end{cases}$ $S_{4} \begin{cases} H = R = \\ \kappa = \zeta = \\ 148^{\circ} \cdot 62 \end{cases}$ $S_{6} \begin{cases} H = R = \\ \kappa = \zeta = \\ 148^{\circ} \cdot 62 \end{cases}$ $S_{8} \begin{cases} H = R = \\ \kappa = \zeta = \\ 148^{\circ} \cdot 62 \end{cases}$ $S_{8} \begin{cases} H = R = \\ \kappa = \zeta = \\ 148^{\circ} \cdot 62 \end{cases}$ $S_{8} \begin{cases} H = R = \\ \kappa = \zeta = \\ 148^{\circ} \cdot 62 \end{cases}$ $S_{8} \begin{cases} R = \\ \kappa = \zeta = \\ 148^{\circ} \cdot 62 \end{cases}$ $S_{8} \begin{cases} R = \\ \zeta = \\ 186^{\circ} \cdot 65 \\ 013 \\ 279^{\circ} \cdot 23 \\ 2333 \\ 318^{\circ} \cdot 35 \\ 2^{\circ} 250 \\ \kappa = \\ 47^{\circ} \cdot 87 \\ 013 \\ \zeta = \\ 192^{\circ} \cdot 09 \end{cases}$	$M_{6} \begin{cases} R = & \cdot 106 \\ \zeta = & 326^{\circ} \cdot 48 \\ H = & \cdot 095 \\ z = & 235^{\circ} \cdot 05 \\ R = & \cdot 016 \\ \zeta = & 170^{\circ} \cdot 04 \\ H = & \cdot 014 \\ \kappa = & 168^{\circ} \cdot 15 \\ R = & \cdot 158 \\ \zeta = & 135^{\circ} \cdot 88 \\ H = & \cdot 194 \\ \kappa = & 38^{\circ} \cdot 29 \\ R = & \cdot 318 \\ \zeta = & 223^{\circ} \cdot 29 \\ R = & \cdot 318 \\ \zeta = & 223^{\circ} \cdot 29 \\ R = & \cdot 116 \\ \zeta = & 254^{\circ} \cdot 60 \\ H = & \cdot 154 \\ \kappa = & 85^{\circ} \cdot 78 \\ R = & \cdot 123 \\ \gamma = & 233^{\circ} \cdot 74 \\ H = & \cdot 123 \\ \kappa = & 49^{\circ} \cdot 95 \end{cases}$	$Q_{1}\begin{cases} R = & 008 \\ \zeta = & 260^{\circ}.54 \\ H = & 010 \\ \kappa = & 29^{\circ}.44 \\ L_{3}\begin{cases} R = & 197 \\ \zeta = & 20^{\circ}.90 \\ H = & 176 \\ \kappa = & 71^{\circ}.06 \\ \kappa = & 71^{\circ}.06 \\ \kappa = & 352 \\ 76^{\circ}.11 \\ H = & 340 \\ \kappa = & 32^{\circ}.12 \\ R = & \\ \lambda_{2}\begin{cases} R = & \\ R = & $	$T_{s} \begin{cases} R = \\ \zeta = \\ R $	*059 37° 52 •059 45° 00 •198 275° 62 •191 5° 14 •084 32° 66 •081 303° 14 •140 205° 53 •135 28° 03 •086 256° 17 •088 256° 17 •088 23° 32 •096 298° 63

Short Period Tides.

۰.

$M_{4} \begin{cases} R = & 249 \\ \zeta = & 141^{\circ}60 \\ H = & 231 \\ \kappa = & 320^{\circ}65 \end{cases}$	$J_1 \begin{cases} R \\ \zeta \\ H \\ \pi \end{cases}$		•013 81°•84 •015 42°•47	$R_{g} \begin{cases} R \\ \zeta \\ H \\ \kappa \end{cases}$	= = =	$\binom{(2M_2K_1)_3}{H} \begin{cases} R\\ \zeta\\ H\\ \kappa \end{cases}$	$ \begin{array}{c} = & 0.073 \\ = & 262^{\circ}.61 \\ = & 0.76 \\ = & 255^{\circ}.88 \end{array} $
		Lo	ng Per	riod Tides	·		
				R	ζ	H	ĸ
Lunar Monthly Tide . ,, Fortnightly ,, . Luni-Solar ,, ,, . Solar-Annual ,, . ,, Semi-Annual ,, .	•	• • •	• • •	'132 '085 '272 2'018 '211	251 ^{0.} 24 284 [.] 65 144 [.] 00 248 [.] 04 173.31	*117 *134 *262 2*018 *211	24 ^{0.} 76 29.3 5 54.47 161.8 <u>3</u> 0.89

Short Period Tides-contd.

VALUES OF THE TIDAL CONSTANTS, PORT BLAIR, 1903.

The following are the amplitudes (R) and epochs (ζ) deduced from the 1903 Observations at Port Blair; and also the *mean* values of the amplitudes (H) and of the epochs (k) for each particular tide evaluated from the 1903 Observations.

	Ao =	4 [.] 864 feet.			
$S_{1} \begin{cases} H = R = & 017 \\ \kappa = \zeta = & 056 \\ 32^{\circ} 01 \\ S_{2} \begin{cases} H = R = & 056 \\ \kappa = \zeta = & 056 \\ 314^{\circ} 41 \\ 013 \\ \kappa = \zeta = & 002 \\ 002 \\ \kappa = \zeta = & 002 \\ 002 \\ \kappa = \zeta = & 002 \\ 002 \\ \kappa = \zeta = & 002 \\ 002 \\ \kappa = \zeta = & 002 \\ 002 \\ \kappa = \zeta = & 002 \\ 002 \\ \kappa = & 002 \\ \kappa = & 002 \\ 002 \\ \kappa = & 002 \\ \kappa$	$M_{g}\begin{cases} R = 000\\ \zeta = 100^{\circ}3\\ H = 289^{\circ}5\\ R = 289^{\circ}5\\ R = 290^{\circ}3\\ R = 290^{\circ}3\\ R = 189^{\circ}9\\ R = 189^{\circ}9\\ R = 300^{\circ}0\\ R = 300^{\circ}0\\ R = 300^{\circ}0\\ R = 326^{\circ}5\\ R = 134^{\circ}8\\ H = 326^{\circ}5\\ R = 199\\ R = 196\\ $	$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	$= \frac{005}{18007}$ $= 276^{0}95$ $= 276^{0}95$ $= 292^{0}41$ $= 092^{0}41$ $= 092^{0}41$ $= 093^{0}388$ $= 273^{0}7$ $= 000^{0}388$ $= 273^{0}7$ $= 000^{0}388$ $= 218^{0}40$ $= 064$ $= 316^{0}14$ $= 093$ $= 064$ $= 307^{0}21$ $= 086$ $= 307^{0}21$ $= 086$	$T_{2}\begin{cases} R\\ \zeta \\ R\\ (MS)_{4} \begin{cases} R\\ \zeta \\ R\\ Z\\ R$	$= 325^{\circ}.98$ $= 325^{\circ}.98$ $= 288^{\circ}.08$ $= 231^{\circ}.17$ $= 231^{\circ}.17$ = 027 $= 88^{\circ}.69$
	20.051	R	ζ	н	ĸ

Short Period Tides	Short	Period	Tides.
--------------------	-------	--------	--------

					R	ζ	н	ĸ
Lunar Monthly "Fortnightly Luni-Solar " Solar-Annual "Semi-Annual))))	•	• • •	• • •	•045 •029 •045 •296 •184	191 ^{0.} 34 163 ^{0.} 38 204 ^{0.} 49 250 ^{0.} 51 299 ^{0.} 88	*040 *046 *043 *296 *184	43°·32 66·18 261·40 170·21 139·29

Date of commencement of computations.

28. The tidal computations for the several stations commenced on the 1st January.

29. The present state of the tidal computations is shown in the following State of tidal computations. State of tidal computations. table, together with their state at the end of September 1903. The letters A. P.

in this table indicate, that the actual times and heights of high and low water have been measured either from the tidal diagrams or from gratuated staves and compared with predicted values published in the tide tables.

Statement of the ordinary reductious of the yearly registrations at the beginning and
end of the Survey year 1903-04.

Tidal obse	ervatory	7.		State at end of September 1903.	State at end of September 1904.
Suez .	•	•	•	1902 incomplete, A. P. 1902	Igo2 calculations completed. Igo3 "."""""""""""""""""""""""""""""""""""
Perim .	•	•	•	1902 calculations completed, A. P. 1902.	
Aden .	•	•	•	1902 calculations completed, A. P. 1902.	1903 incomplete, A. P. 1903.
Karáchi.	•	•	·	1902 calculations completed, A. P. 1902.	1903 calculations completed A. P. 1903.
Port Albert V	lictor	•	•		1903 incomplete, A. P. 1903.
Bhávnagar	•	•	•	A. P. 1902	A. P. 1903.
Bombay (Apo	ollo Ba	andar)	•	1902 incomplete, A.P. 1902 .	{ 1902 calculations completed. 1903 calculations completed, A. P. 1903. (1902 calculations completed.
Bombay (Pri	n ce' s !	Dock)	•	1902 incomplete, A. P. 1902	1903 Long Period Tides in- complete, A. P. 1903.
Mad ra s .	•	•	•	1902 calculations completed, A. P. 1902.	1903 calculations completed, A. P. 1903.
Kidderpore	•	•	•	1902 calculations completed, A. P. 1902.	
Chittagong	•	•		A. P. 1902	A. P. 1903.
Akyab .	•	•	•	A. P. 1902	A. P. 1903.
Bassein .	•	•			
Rangoon	•	•	•	1902 calculations completed, A. P. 1902.	
Port Blair	•	• `	•	1902 calculations completed, A. P. 1902.	1903 calculations completed A. P. 1903.

30. In addition to the computations enumerated in the foregoing table, Auxiliary Reports. Reports on the operations carried on in the Bombay Presidency and in Burma were

prepared and submitted, the former to the Local Government, the latter to the Principal Port Officer, Rangoon.

31. As far back as 1891 Professor G. H. Darwin drew the attention of Mr. Roberts of the Nautical Almanac Office to the fact that the incidences of the double hours in the forms of the M series were not correct. Mr. Roberts on looking into the matter found that the error was due to the fractional part of the hour of incidence having been ignored. It would appear, that the mistake was not communicated to the officer of this party till 1902, when Professor Darwin spoke to Major Burrard about it. On the matter being thoroughly investigated it was found that there were mistakes in the forms of all the series, and they were accordingly all corrected. In addition the computations for the main lunar semi-diurnal tide (M2) for three ports Perim, Bombay and Port

Blair were completely revised for the year 1901, using the data given by the corrected forms. It was found that this revision gave a difference of 0°.5 in the epoch (K) and of 0.002 foot in the amplitude (H2) from the results of the original computations; i.e., the principal tide was only affected in time by 2 minutes, and in height by $\frac{1}{43}$ of an inch. As the differences were so insignificant, it was evident that it was unnecessary to continue the revision for other tides and other ports. All the forms in stock have been corrected by hand.

32. The usual work in connection with the timely issue of tide tables for the year 1906 has been carried out. The Tide Tables. tide tables now contain the predictions of high and low water for 40 ports.

33. The tide tables for 1904 were as usual received too late to complete their distribution before the end of the Receipt and issue of tide tables.

year 1903. It is hoped in future that this

office will be able to undertake the distribution of the tables before the 1st December of the year preceding that for which the tables are predicted. The data for the predictions for 1905 tides were sent to England in July 1903, the tables should therefore be received in India sometime before the 1st December 1904.

34. The datum for the tide tables for 1905 is the datum of soundings of the latest Admiralty charts with the excep-Datum for tide tables.

tion of Bassein. Tables giving the parti-

culars of the datum at each tidal station will be found in the appendix to the General reports for 1891-92, 1893-94, 1895-96, in paragraph 24 of the annual report for 1898-99 and in paragraph 22 of the narrative report for 1900-01.

The datum for the tide tables of Bassein is the Indian Spring low water mark, which has not yet been connected with the Admiralty datum.

• Sale of tide tables.

35. The amount realized from the sale of the tide tables in the financial year 1903-04 was Rs. 1,550-4-0.

Data supplied to the Tidal Assistant Physical Laboratory, Teddington.

36. The following data were furnished to the Tidal Assistant at the Physical Laboratory, Teddington.

- (i) Mean values of the tidal constants for the tide tables for 1904 and 1905 calculated in the usual manner, and ready for use in the tide predictor.
- (ii) Actual values during 1903 of every high and low water measured in duplicate from the tidal diagrams at 10 stations and of tide pole observations taken during daylight at 4 closed stations.
- (iii) Comparison of the above with the predicted values for 1903, the errors being tabulated in a convenient form to assist the Tidal Assistant in his predictions.

37. In 1902 the Surveyor-General brought to the notice of the Government Removal of the Tide Predicting Machine, to the Physical Laboratory at Teddington. Were undertaken by a private in divide were undertaken by a private individual, and that should anything occur to prevent him continuing the work, very great delay and inconvenience might be entailed, before any work, then in hand, could be completed.

The India Office thereupon decided to transfer the work to some corporate body; and enquired of the Director of the National Physical Laboratory at Teddington whether that institution could undertake the work. Dr. Glazebrook, F.R.S., the Director, accepted the responsibility, and it was arranged that the machine should be moved from the India Store Department at Lambeth after the predictions for 1904 were completed.

38. The tide predicting machine was constructed in the year 1879 by History of the tide predicting machine. Messrs. A. Légé & Co. of London to the designs of Mr. Edward Roberts on

the plan devised by Lord Kelvin. Twenty tidal components were then included; in 1891 four more components were added. From 1870 the running of the machine and the preparation of the tide tables were superintended by Mr. Roberts; early in 1903, however, the machine was removed from his charge, and handed over to the makers previous to being set up at the Physical Labora-Messrs. Légé found on examination that many of the wheels and worms tory. were very much worn; most of these therefore were re-cut or renewed and the machine restored to a thoroughly good working condition. The machine had been in continuous use at Lambeth for a period of more than 20 years before these repairs became necessary. The work of restoration occupied some months, and it was not until August 1903, that the machine was erected in the Physical Laboratory at Teddington; it now occupies one of the ground floor rooms in Bushy House. It is driven by a small water motor, and has been running satisfactorily during the predictions for the 1905 tables. Some small alterations, for the attainment of greater accuracy of setting, had been carried out by the Laboratory mechanic.

Mr. F. J. Selby has been appointed as Tidal Assistant at the Laboratory to supervise the setting of the machine, and to be generally responsible for the work; under him is a computer, who makes the calculations and measures the curves.

39. The usual tabular statements Nos. 1 to 5 are appended showing the Errors in predicted times and heights of high and low water. predicted times and heights \cdot of high and low water for the year 1903 at 14 stations as determined by comparison of the predictions given in the tide tables, with actual values measured from the tidal diagrams at 10 stations, and from tide poles at 4 stations; the former are made by assistants in this office, and the later by port officials.

Ν	о.	Ι.
	•••	

STATION.	Automatic or Tide- pole observa- tions.	Number of comparisons between actual and predicted values.	Errors of 5 minutes and under.	Errors over 5 minutes and under 15 minutes.	Errors over 15 minutes and under 20 minutes.	Errors over 20 minutes and under 30 minutes.	Errors over 30 minutes.
			Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
Suez	Au.	697	26	40	10	15	9
Aden • • •	Au.	674	42	46	5	5	2
Karáchi · · ·	Au.	702	35	38	11	12	4
Port Albert Victor	Au.	699	25	40	13	15	7
Bhávnagar	T. P.	302	21	72	3	38	I
Bombay Apollo Bandar	Au.	703	34	45	10	8	3
	Au.	685	41	43	7	6	3 3
Madras	Au.	679	46	45	5	3	I
Kidderpore		705	21	34	14	19	12
Chittagong		365	14	32	10	15	29
Akyab		365	96	4		•••	•••
Rangoon		7°5	20	34	16	24	6
Moulmein		365	12	63	18	5 3	2
Port Blair •	Au.	705	48	42	6	3	I

Statement showing the percentage and the amount of the errors in the predicted Times of High Water at the various Tidal Stations for the year 1903.

.

Sta	TIONS,			Automatic or. Tide- pole observa- tions.	Number of comparisons between actual and predicted values.	Errors of 5 minutes and under.	Errors over 5 minutes and under 15 minutes.	Errors over 15 minutes and under 20 minutes.	Errors over 20 minutes and under 30 minutes.	Errors over 30 minutes.
						Per cent.	Per cent.	Per cent.	Per cent.	Per cent.
Suez .	•	•	•	Au.	697	25	37	11	14	13
Aden .	•	•	•	Au.	673	39	47	6	6	2
Kárachi	•	•	•	Au.	7°4	23	42	14	15	6
Port Albert	Victor	•	•	Au.	7°5	26	39	9	13	13
Bhávn agar	•	•	•	T. P.	30 3	15	76	8	I	
	pollo	Bar	ndar	Au.	701	36	42	IO	9	3
Bombay {	rince	s D	ock	Au.	684	38	42	10	8	2
Madras	•	•	•	Au.	680	46	44	6	3	I
Kidderpore	•	•	•	Au.	7°5	22	43	14	14	7
Chittagong	•	•	•	T. P.	365	9	31	9	22	29
Akyab .	•	•	•	T . P.	365	80	20	•••	•••	
Rangoon	•	•	•	Au.	706	20	36	15	15	. 14
Moulmein	•	•	•	T. P.	365	13	53	17	15	2
Port Blair	•	•		Au.	705	42	45	6	6	I

Statement showing the percentage and the amount of the errors in the Predicted Times of Low Water at the various Tidal Stations for the year 1903.

No. 3.

STATIONS.			ONS.		ATIONS.		Number of comparisons between actual and predicted values.	Mean range at springs in feet.	Errors of 4 inches and under.	Errors over 4 inches and under 8 inches.	Errons over 8 inches and under 12 inches.	Errors over 12 inches.
•							Per cent.	Per cent.	Per cent.	Per cent.		
Suez.	•	•	•	Au.	697	55	бі	26	9	4		
Aden •	•	•	•	Au.	674	6 [.] 7	9 6	4	•••	•••		
Karáchi .	•	•	•	Au.	702	9.3	71	24	3	2		
Port Albert	Victo	r.	•	Au.	699	11.4	42	30	20	8		
Bhávnagar	•	•	•	Т. Р.	302	31.4	38	38	14	10		
	polle	o Ban	dar	Au.	703	13.9	76	18	5	I		
Bombay {	rince	's Do	ck	Au.	685	13.0	76	18	5	I		
Madras	•	•	•	Au.	679	3.2	77	19	4	•••		
Kidderpore	•	• .	•	Au.	705	11.7	36	19	16	29		
Chittagong	•	•	•	Т. Р.	365	13.3	32	19	16	3 3		
Akyab •	•	•	•	T. P.	365	8.3	74	15	10	I		
Rangoon	•	•	•	Au.	7°5	16'4	56	29	11	4		
Moulmein	•	•	•	т. р .	365	12'7	26	28	13	33		
Port Blair	•			Au.	705	6.0	75	22	3	•••		

No. 4.

Stations,	Automatic or Tide- pole observa- tions.	Number of comparisons between actual and predicted values.	Mean range at Springs in feet.	Errors of 4 inches and under.	Errors over 4 inches and under 8 inches.	Errors over 8 inches and under 12 inches.	Errors over 12 inches.
Andrew 1997 - 19				Per cent.	Per cent.	Per cent.	Per cent.
Suez .	Au.	697	5.2	52	31	11	6
Aden	Au.	673	6.2	06	4		
Karáchi.	Au.	704	9.3	96 81	16	2	I
Port Albert Victor .	Au.	205	11.7	53	34	10	3
Bhávnagar	T . P .	303	31.4	43	40	11	3 6
Bombon (Apollo Bandar	Au.	701	13.9	67	26	6	T
Prince's Dock	Au.	684	13.9	65	27	6	2
Madras	Au.	680	3.2	82	15	3 8	
Kidderpore .	Au.	7°5	11.7	42	21	8	29
Chittagong .	T. P.	365	13.3	28	20	15	37
Akyab	T. P.	365	8.3	77	18	4	· 1
Rangoon	Au.	706	16.4	29	27	21	23
Moulmein	T. P.	365	12.7	27	24	20	29
Port Blair	Au.	705	6.6	75	21	4	

Statement showing the percentage and the amount of the errors in the Predicted Heights of Low Water at the various Tidal Station for the year 1903.

No. 5.

Table of Average Errors in the Predicted Times and Heights of High and Low Water at the several Tidal Stations for the year 1903.

				Automatic or	Mean range			Average	Errors		
STATIONS.		Tide-pole observations.	at Springs in feet.		ime in utes,		t in terms range.	of Hei inch	ght in les.		
Open	Coa	st.				н . w .	L. W.	н. w.	L. W.	н . w.	L. W.
Suez	•	••••		Au.	5.2	14	15	·061	·076	4	5
Aden		•	•	Au.	6.7	8	9	*025	025	2	2
Karáchi 🔍 🔒				Au.	93	11	13	°03Ŏ	.027	4	
Port Albert Vi	ictor		•	Au.	11.7	14	j 1	'043	·036	6	3 5 6
Bhávnagar .		•	•	T. P.	31.4	ġ	10	°019	.016	7	Ğ
	ollo 1	Bandar	•	Au.	13.9	10	10	·018	·024	3	
Dombay 2 Pri	ince's	Bandar Dock		Au.	139	9	10	·018	·024	3	i
Madras .		•		Au.	3.5	7	8	·071	·071	3	3
A kyab .		•		T. P.	8·3 6·6	2	3	.030	.030	3	3
Port Blair .	•	•	•	Au.	6.6	7	8	·038	·038	3	4 4 3 3 3
		G	BNBI	RAL MBAN	• • •	9	10	•036	·037		
Riv	erain	1.					-				
Kidderpore .				Au.	11.2	16	14	·071	·061	10	
Chittagong .		• •		T D	13'3	22	23	.063	.063	10	9
Rangoon .				Au.	16.4	15	16	·025	.011	5	8
Moulmein .		• •	•	T. P.	12.7	12	13	.000	.000	10	10
	 G	BNBRAL	Me	AN .	• •	16	17	•056	·059	•	•••

The foregoing statement for the year 1903 may be thus summarised :----Percentage of time predictions within 15 minutes of actuals.

		High Water. Per cent.	Low Water. Per cent.
Open coast {	8 at which predictions were tested by S. R. Tide gauge	. 80	77
Stations . {	2 ,, , , , Tide pole	• 97	96
Riverain {	2 ,, , , , S. R. Tide gauge	• 55	61
Stations . {	2 ,, , , , Tide pole	• 61	5 3

NO. 25 PARTY (TIDAL AND LEVELLING).

		•				High Water. Per cent.	Low Water. Per cent.
Open Coast Stations.	8 at	t which p	predictions were tested	by S. R. Tide gauge	•	92	93
Stations.	2	"	"	Tide pole	•	83	89
Riverain 5	2	"	"	S. R. Tide gauge	•	70	бо
Stations. 2	2	"	ور	Tide pole	•	53	50

Percentage of height predictions within 8 inches of actuals.

Percentage of height predictions within one-tenth of mean range at Springs.

						High Water. Per cent.	Low Water. Per cent.
Open Coast Stations.	8 al	which j	predictions were tested	by S. R. Tide gauge	•	94	94
Stations.	2	"	39	Tide pole	•	98	9 9
Riverain (2	"	22	S. R. Tide gauge	•	88	87
Stations. {	2	92	33	Tide pole	•	78	80

40. In the above summary the readings taken from the diagrams are accurate both as to time and height, but those

Accuracy of Summary. from tide poles are occasionally subject to considerable errors as regards time, owing to the inaccuracy of the time kept locally.

41. The predictions for the riverain stations for the year 1903 as com-Comparisons of the predictions at Riverain Stations for years 1902 and 1903. Stations for years 1903 as comstations for years 1903 and 1903. Stations
high waters were about the same, but for low waters were slightly inferior, the heights of high waters were about the same, the low waters below for the two stations Chittagong and Moulmein at which tide pole observations were taken, the predictions for time and height both for high and low waters were a little worse.

At Kidderpore the greatest difference between the actual and predicted heights of low water was 3 feet 4 inches on the 6th and 9th August : in both cases the predictions were in excess.

At Chittagong it was 2 feet 8 inches on 20th May, 3rd and 4th June, in each instance the actuals being in defect.

At Rangoon it was 3 feet on 29th January, the predictions being higher.

At Moulmein, it was 2 feet 11 inches on 22nd October, the prediction being lower.

¥ 2

LEVELLING OPERATIONS.

42. The strength of the Levelling Detachment on taking the field was as follows :---

Levellers	Mr. E. H. Corridon				ıst Leveller.	Leveller.	
Leveners	Munshi Syed Zille Hasnain	•	•	•	2nd ,,		
	Rikhi Ram.						
Recorders.	Rikhi Ram. Lachman Sing. Gop al Sing.						
	Gopal Sing.						

43. The detachment left Dehra for the field on the 17th October 1903 and arrived at Mandalay on the 28th idem.

44. In consequence of some discrepancies discovered in the heights of points between Mandalay and Myohaung, determined in season 1892-93 and again during last field season, it was considered necessary to continue the check levelling to the next embedded bench-mark at Myitngè Railway station. The detachment was employed on this work till the 4th November, leaving the following day for Shwebo where operations were closed last field season.

45. Regular levelling operations were resumed from Shwebo and carried along the Mu Valley section of the Burma Railway to Wuntho, where this line of levels was closed on 25th December. Orders having been received to return to Mandalay and take in hand the revision of the old levelling along the railway towards Rangoon to a considerable distance, as the check levelling done between Myohaung and Myitngè at the commencement of this field season, confirmed the discrepancies found between Mandalay and Myohaung in the previous field season.

The causes of these discrepancies are under investigation by the Superintendent of Trigonometrical Surveys.

46. Work was re-started at Mandalay on 29th December and carried along the railway line to Pyinmana connecting all the old points. The operations were closed for the season on the 12th April 1904, the detachment leaving Pyinmana for recess quarters on the 15th idem.

47. On arrival at Calcutta urgent orders were found awaiting the detachment to proceed at once, with all the menial establishment and the requisite stores and instruments, to Dehra in order to take up the levelling from Dehra to Mussooree which was urgently required in connection with the Pendulum observations. The detachment reached Dehra on 25th April and commenced work on 28th idem. This line of levels emanated from the bench-mark at the Trigonometrical Branch Office at Dehra and was carried along the main road to Rajpur, thence along the cart road viá Bhatta to the Crown Brewery from where the levels branched off to the Library closing at the Great Trigonometrical Survey Stations at Camel's Back on 30th May 1904.

48. The personnel of the detachment on the Dehra-Mussooree section was the same as in Burma, with the exception that Mr. Corridon after levelling up to the 10th May was deputed to the tidal section of No. 25 Party at Dehra for a course of instruction in the duties of that section, Captain H. H. Turner, R.E. relieving him as first leveller till the close of the work at Mussooree.

49. The health of the establishment during the season under report was fairly good; one khalasie died of cholera at Kyaukse in January 1904.

50. The total rises and falls amounted to 9,125 feet and the outturn of work to 301'7 miles, in the course of which the instrument was set up at 4,035 stations. The heights of 11 new embedded and 78 inscribed bench-marks were

determined, 146 old embedded and inscribed bench-marks, 4 Great Trigonometrical Survey Stations and 9 Irrigation bench-marks were also connected.

51. The usual tabular statements are appended.

Name of Station.	HEIGHT IN MEAN SE	FEET ABOVE IA Level.	Error of height by	Remarks.
	By ∆n.	By Spirit- Levelling.	Triangula- tion in feet.	
Pyinmana h.s. (Mandalay Meridional Series).	4 29'0	419°30*	+ 10,0	ר י
Camel's Back G. T. Survey h. s. (at Mussooree).	6937*0	6935.85	+ 1°15 ft.	Uppermark- stone.
Eagle's Nest G. T. Survey h.s (at Mussooree.)	6927.0	6924.16		J
Dehra Dún pillar N. of Dome Observatory	2229.0	2237.35	- 8·35 ft.	
			l	

List of Great Trigonometrical Survey Stations connected by Spirit-Levelling Season 1903-04.

• This height is dependent on the value of the embedded B. M. at Mandalay, which has been assumed to be correct given on page 76, No. 1 Burma Pamphlet. The height found by levelling from Rangoon in season 1892-93 was found to be 419.55 above mean sea level.

PLACE ANI	DATE (of Compari	SON.	Staff No. 04.	Staff No. 05.	Staff No. 01.	Staff No. 03.
Singaing Kumè Road Samôn Hanza Nyaungyan Pyawbwè Shweda Hngetthaik	1 15th 24th 28th 8th 21st 25th 4th 11th 26th 3rd 12th 22nd 29th 6th 13th	November ,, December January ,, February ,, March ,,	22 22 22 22 22 22 22 22 22 22 22 22 22	+ 0'0027293 + '0021079 + '0018602 + '0020582 + '0017063 + '0016336 + '0016336 + '0016020 + '0016140 + '0010336 + '0010925 + '0001791 + '0002766 - '0002997	+ 0'0039244 + '0032934 + '0031322 + '0029113 + '0030655 + '0027101 + '00297477 + '0029974 + '0025780 + '0019103 + '0015939 + '0008011 + 0009978 + '0007580 + '0002536	0'0000224 '0001364 '00083833 '0003451 '0007848 '00126333 '0007209 '0011134 '0007706 '0017930 '0016129 '0020421 '0020421 '00208112 '0025147 '0030388 '0036836	+ 0'0004831 - '0002200 - '0003103 - '0008574 - '0013353 - '0005313 - '0005313 - '0005313 - '0005313 - '0005313 - '0007092 - '0017299 - '0019813 - '0035322 - '0031615 - '0032780 - '0038645
Tatkôn Pyokkwe Pyinmana Dehra Dún Rájpur Bhatta Mussooree Do.	21st 31st 12th 29th 9th 16th 23rd 31st	" April " May " "))))))))))))))	`0005745 `000629 `0004839 `000461 `0009712 `0007759 `0010676 `0007213	+ '000243 + '0005260 + '0002377 + '0006098 - '0003842 - '0003997 - '0004736 - '0000689	0038338 0038538 0035188 0034487 0048974 0049518 0052767 0048682	'0046403 '0042036 '0041205 '0029614 '0045725 '0048908 '0050703 '0048367

Results of Comparison of Staves, season 1903-04.

	Remarks.		*Includes Ma. 5-63- 96 of check level- ling between Mandalay and	Mytogo	Revision Work.					
	D.	P. W.		:	:::::	:	::	:	:	
	. 0 0i	Irrigat	,	0	: :::		a 4	0	6	
BENCH MARKS CONNECTED		By.	::	:	::::::	:	::	:	:	
RKS CO	·s	.TD	::	:			- 9	8	4	
NCH MA	eq.	ไกรยไ	52 9	47	• • • • •	9	38 1	39	78	
No. of Be	ided.	Embe	41	11	••••	:	::	:	11	
Ň		'PIO	• :	Q	8 1 4 1 1 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 8 8 1 1 8 1	139	-	I	146	
		Ketere	::	:		:	::	:	:	
No. of	Stations at which Instru-	set up.	579 598	1177	93 639 551 573 174	2030	60 768	828	4035	54 feet.
	Ē		103755	483.509	13.528 256491 103.719 434'036 138'399	946'173	4 .308 45.290	49.598	1479.280	Ms. Chs. Iks. 3015258 ; Rises and Falls 9124'564 feet.
TOTAL NO. OF FRET.	Ë	2001	238.650 548.740	187.390	10'437 366'716 376'729 182'188 71'984	1008.054	289°724 4660°116	4949.840	7645.284	Iks. -58 ; Rises and
LING.	Z.	Iks.	888	72	36 - 5 36 - 5	80	72 62	34	14	Ms. Chs. lks. 301-52-58 ;
EVELL	BRANCH LINE.	Chs.	.57	15	042594 25024	34	11	17	57	tturn – 3
UBLE L	BRA	Ms.	00 O	δ	40000	6	00	-	17	Season's outturn -
No. OF MILES DOUBLE LEVEL	48.	lks.	86 52	38	6 030 88	8	30	8	4	, s
DF MIL	MAIN LINE.	Chs.	73	ς,	34 13 23	59	70 20	11	75	
No. 0	W	Ms.	49 * 55	105	4 0 2 4 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	160	15	18	283	
	During the month of		November 1903 • December "	Torals .	December 1903 January 1904 February " March "	TOTALS .	April 1904 May "	TOTALS .	GRAND TOTALS	
	Section.		Shwebo to Wuntho {		Mandalay to Pyinmana {	,	Dehra Dún to Mussooree {			

.

Tabular Statement of out-turn of work for the field season 1903-04.

Digitized by Google

NO. 25 PARTY (TIDAL AND LEVELLING).

IV

ASTRONOMICAL AZIMUTHS.

Extracted from the Narrative Report of Captain H. Wood, R.E., in charge of No. 24 Survey Party (Triangulation) for Season 1903-04.

The party remained under the charge of Captain H. Wood, R.E., until and September 1904, when he handed over charge to Captain H. H. Turner, R.E. No changes occurred amongst the Provincial or Ministerial Officers.

The programme for the season was to continue the triangulation of the Great Salween Series southwards on the west of, but parallel to the Salween river with the eastern stations lying approximately along the meridian of 98° 30'.

The recess office closed in Mussooree on the 22nd September 1903 and the field establishment under Mr. Hunter proceeded to Burma. Lashio was reached on October 25th and the Provincial Officers immediately proceeded to the stations built at the close of the preceding year and commenced laying out the approximate work. They continued working until April 5th, when haze completely prevented further operations, by which time they had carried the advance work and built stations as far south as latitude 20° 30'. The two final stations are situated on hills on which stations of the Möng Hsat Secondary Series are located, but as the sites of these were not suitable for the stations of a principal series, other positions were chosen close by. No difficulty should be experienced in re-fixing from stations of the Great Salween Series the positions of four or five of the stations of the Möng Hsåt Series. No angles were measured during the season on this series as on Captain Wood's return from Khatmandu (to which place he was deputed early in October to investigate the supposed identity between Mount Everest and a snow peak known to the inhabitants of the Nepal valley as Gaurisankar) it was decided that, as the season suitable for triangulation work in Burma was so far advanced, it would be better to employ him during the remainder of the cold weather on observing astronomical azimuths at some of the longitude stations of India and Burma. He observed azimuths at Jalpaiguri station, Orejhar station, Kyaunggyi station, Bolarum Public Works Department Office station, Deesa Telegraph Office station and Quetta Telegraph Office station. Fine weather was experienced at all the stations with the exception of Bolarum where cloudy weather delayed the completion of the work for nearly four weeks. An astronomical latitude was observed at Quetta, and the presence of Captain Pirrie (No. 15 Party) at Nushki was taken advantage of and the difference of longitude between these two places was determined telegraphically.

The recess office was opened at Mussooree on 2nd May, but the party working in Burma did not arrive till a week later.

Owing to the change in the locale of the party's operations from Burma to Baluchistan, the programme for the ensuing year is to commence a new principal series starting with the base Zibra-Zawa on the Kalat Secondary Series about longitude 66° 35' and running westwards along the parallel of 29°. This series will eventually be connected to the Great Indus Series, but at present the section between that series and the base Zibra-Zawa will remain in abeyance.

As many years may elapse before work is recommenced in Burma,

it may be useful, to put on record here what principal triangulation remains to be completed in that country. Up to the present the Great Salween Series has been carried along parallel of latitude 23° 30' from the Mandalay Meridional Series to the river Salween, where the series turns to the south. Stations have been built (but no angles measured) along the meridian of 98° 30' as far south as 20° 30'.

When the series is continued, the stations built south of parallel 22° may have to be rejected, as the series will probably be deflected eastwards through Kwengtung to the French frontier on the Mekong, and thence south-westwards to the eastern extremity of the Möng Hsåt Secondary Series. From this point it should follow the Siamese boundary to latitude 17°, keeping east of the Salween, closing eventually on the Eastern Frontier Series.

During the recess the computation of the work done during the field season was completed, and the observations made by Captain Wood in Nepal were re-computed in duplicate. These observations were originally computed while he was in Nepal, but time did not permit of an independent check, and on re-computation a slight mistake was found in the computations of the observations taken at Mahádeo Pokra hill station. This error does not affect the results appreciably.

In addition, the co-ordinates of the stations of observations were computed on a different system and with these values the positions of three prominent buildings in the Khatmundu valley and 24 prominent snow peaks, previously unfixed, ascertained. The heights were re-computed using a co-efficient of refraction obtained by the method of minimum squares from equations furnished by the observations made to seven of the Great Trigonometrical peaks.

The method employed in computing the azimuths at longitude stations was that laid down in the Trignometrical Hand Book, second edition, with the exception that 7 place logs were used on page 12 of the form in lieu of the 5 and 6 place ones recommended.

In the tabular form given below, in addition to the usual results the deflection of the plumb-line in the prime vertical, as obtained from the azimuth observations and from the longitude work, are shown for the purposes of comparison :--

			DIFFERENCE I ARC BE		DEFLECTION IN PRIME V SECONDS OF A FRO	ARC DEDUCED	
STATION.	Lat. N. = \$	Long. E.	Results ob- tained from stars at E. elongation and stars at W. elonga- tion or EW.	Astronomical value and Geodetic value or O-C	$\begin{array}{c} Azimuth\\ observations\\ (O-C)\\ cot \\ \phi \end{array} \qquad		
Jalpaiguri . Orejhar (Fyzabad) Kyaunggyi (Prome) Bolarum . Deesa . Quetta .	17 30 11	0 , " 88 46 41 82 14 35 95 15 24 78 33 38 72 13 33 67 2 59	+0.03 -0.66 -0.55 +0.34 -0.62 +1.73	-5 -4.06 -7.80 -1.1 -4.59 -4.86	" 10'02 E. 8'04 ,, 22'89 ,, 3'49 ,, 10'18 ,, 8'35 ,,	18.26 E. 0.40 ,, 15.48 ,, 3.29 ,, 3.28 ,, 2.07 ,,	

* The deflections of the plumb-line in the prime vertical as derived from longitude observations are extracted from page 15 of Major Burrard's work on "The attraction of the Himalayas, etc." Professional paper No. 5 of 1901.

The latitude of Quetta Telegraph Office station was observed with the 12-inch theodolite No. II. The method employed was that known as "circummeridian zenith distances." Stars with zenith distance varying from 1° to 70° were used and carefully paired at equal distances north and south of the zenith. Their co-ordinates were taken from the Nautical Almanac, Connaissance des Temps or Berliner Astronomisches Jahrbuch.

The chronometer error was obtained by timing the transits of stars of small zenith distance across the meridian both at the commencement and on the completion of the latitude work, a correction being afterwards applied for deviation.

The collimation error was reduced to as small a quantity as possible before the work began, but in the computations a correction deduced from the azimuth observations was applied. The body of the theodolite was carefully levelled before work began, and the body levels read in the four positions both before and The transit axis level was also read and a after the observations were made. correction for inclination applied. Observations to a latitude star were commenced five minutes before the time of its meridian passage and four measures of its zenith distance made, two being taken face right and the others face left. The level was read at each observation. As the time required for each intersection was about two minutes this method gave two observations (one face right and one face left) before transit and two similar ones after. The observations were spread over three nights, and the zenith distance of twelve pairs of stars measured. During the measurements it was found very difficult to find the stars of small zenith distance to drop in sufficient time to enable four observations to be made and on computing the results, it was obvious that during the measurement of the stars with 1° zenith distance some mistake had been made and consequently the result obtained from that pair was rejected.

The formula employed in the computations was $\zeta_1 = Z_1 \pm Am + Bn$ where $A = \frac{\cos \phi \cos \delta}{\sin \zeta_1}$ $B = A^{s} \cos \zeta_1$ $m = \frac{2 \sin^{s} \frac{1}{2}t}{\sin 1''}$ $n = \frac{2 \sin^{s} \frac{1}{2}t}{\sin 1''}$

The second term was only computed when the correction was over $o'' \cdot o1''$ and wherever the correction obtained by the first term was larger than 1', the computation was repeated using the new value for the approximate zenith distance and latitude.

Each pair of observations (*i.e.*, one face right and one face left) was corrected for level and computed out separately, thus two values of the colatitude were obtained from each star or four from each pair. (In two cases the second value from one of the stars of a pair was largely discordant and evidently a different star had been observed. These discrepant results were rejected and three values only of co-latitude for those pairs employed). The mean co-latitude from each star having been thus obtained, the mean for each pair was deduced and received a weight of 1 if it was derived from four observations, and 0.5 if derived from 3. The weighted mean of the 11 pairs was then obtained with the probable error of the mean result.

	LATII	UDE.		No. of pair	.
STATION.	Geodetic C.	Astronomical O.	0C.	of stars used.	Ptobable error.
Quetta Telegraph Office station.	o , ø 30 11 57 [.] 37	o / / 30 11 55 [.] 82	<i>–</i> 1.22	II	# 0`089
					Z

The greatest difference between the two values of co-latitude from a star is 2^{*}·3, the mean being o^{*·8}4. The difference between the greatest and least values of co-latitude obtained from stars of the same aspect is for north stars $3^{*\cdot}65$, and south stars $4^{*\cdot}05$, and the difference between greatest and least values obtained from pairs of stars is $1^{*\cdot}62$.

There is a constant difference of about 6" between the values obtained from north and south stars, but the reason of this is not apparent, and owing to the early close of the recess season there has been no time for investigating it.

The determination of the difference of longitude between Quetta and Nushki was made by sending groups of signals telegraphically from either place alternately, and the observers noting their time of receipt and despatch. Captain Pirrie at Nushki using a 6-inch theodolite obtained his chronometer correction by the method known as "east and west" stars. He employed on an average 12 stars (6 east and 6 west) for each determination and took two observations (one face right and one face left) to each star. Captain Wood at Quetta used the 12-inch theodolite No. II and obtained the correction for his chronometer in a similar way to that described in the paragraph referring to the latitude observations. Determinations of the clock errors were made both immediately before and after the interchange of telegraphic signals. These signals consisted of groups of five single short signals at irregular intervals (but averaging about 15 seconds) the sender noting the exact moment he pressed the key, while the receiver watching his chronometer noted the exact moment he heard the sounder at his end. At the completion of five signals the receiver became the sender, and the double set was called a group and the mean of the differences between the local times (corrected for the chronometer errors) of receipt and despatch of the 10 signals formed one determination of the difference of longitude. The order of sending the first set of signals was alternated in each group and seven groups were sent and received on an average, on each of three nights.

On the last night, there was a certain amount of interference on the telegraph line and for this reason in place of taking the arithmetical mean of all the groups as the final value of Δ L, this quantity was obtained by weighting the mean of each night's work in inverse proportion to the square of its probable error.

-		Date.	•		Daily mean	of∆L.	Probable error.	Weight.	Final mean and probable error.
				-	m.	S.	S.		m, s. s.
7	April	1904	۲	- 1	3	59 ⁻ 52	±0.022	150°40 :	3 59.57 ±0058
8	IJ	,,	•	•	3	59.53	±0.023	161.90	or 0° 59′ 53 ^{°.} 55 ±0°*87
9	**	89	•	•	3	59'9 0 ;	±0. 104	42.0 6	

An abstract of the results is given below :---

The final value of the longitude of Nushki Longitude Station is therefore $66^{\circ} 3' 5'' \circ 7 \pm 0'' \cdot 87$.

UTILIZATION OF OLD TRAVERSE DATA FOR MODERN SURVEYS IN THE UNITED PROVINCES OF AGRA AND OUDH.

Extracted from the Narrative Report of Captain H. L. Crosthwait, R.E., in charge of No. 14 Party (United Provinces of Agra and Oudh) for season 1903-04.

In the case of "Supplementary" survey it may be useful to place on record, in some detail, the methods adopted.

The old material available for this work consisted of :---

- I. main circuit traverse data, each main circuit being run down from a separate origin;
- II. Village traverses, each village having a separate origin;
- III. Congregated village maps, on a scale of 4 inches=1 mile.

In order to make the best use of this data, for purposes of "Supplementary" survey, the following procedure was adopted, instead of the former method which was not found to give good results.

The plane-table was prepared for the field in four stages (i) The values of main circuit traverse points were reduced to the origin of the new survey, through the medium of mutually connected Great Trigonometrical stations. These were then plotted in the usual manner on the plane-table section. (ii) On each of the old congregated village maps, is found a table of the values of trijunctions of neighbouring sheets run down from the same origin as the main circuits, mentioned above. After reduction to the new origin these were also plotted on the plane-table. Thus a number of accurate fixed points were scattered over the table, all plotted from the same origin. These were used as a basis for fixing the village origins, thereby making it possible to immediately utilise the independent village traverses described above in II. (iii) Each village origin was then laid off graphically on the plane-table from at least three fixed points. The village trijunctions were then plotted in the usual manner. (iv) Details, omitting limits of cultivation, were pantagraphed down from the congregated village sheets, and inked in blue on the field sections. The plane-table was then ready for "Supplementary" survey in the field.

VI

IDENTIFICATION OF SNOW PEAKS IN NEPAL.

Extracted from the Narrative Report of Captain H. Wood, R.E., for Season 1903-04.

As the computation of the results of Captain Wood's visit to Khatmandu published in "The Identification and Nomenclature of the Himalayan Peaks as seen from Khatmandu, Nepal" had been made in Nepal during the field season without an independent check, advantage was taken during the recess to make a duplicate copy of the observations, and to re-compute the work in duplicate. A slight mistake was discovered, which did not affect the results practically, but a corrected copy of Appendices[#] Nos. 1 and 2 of the report on the Identification and Nomenclature of the Himalayan Peaks, etc., is attached.

On the completion of these computations, it was decided to compute the positions of the two stations of observation by a different method. In the report mentioned above, it will be seen that from Mahadeo Pokra hill station, the cairn marking the station of observation on Kaulia hill was visible and that its azimuth was measured. This azimuth is of a much greater order of accuracy than those taken to the snow peaks, as the cairn formed a distinct and easily recognized mark, while the snow peaks gave no very definite points to which observations could be taken, and also it was a matter of chance whether the points selected were exactly the same as those fixed from the plains of India. Starting then with this known azimuth and the astronomical latitudes observed at the two stations, it is an easy matter to compute the reverse azimuth and the distance apart of the stations; and with this distance and the measured angles at the stations between any two peaks (observed at both stations) to obtain the distances and azimuths of the stations from the peaks, and consequently the latitudes and longitudes of the stations. The only complication introduced by this method is due to the difference between the astronomical and geodetic latitudes at the stations of observation and the fact that the stations observed from happened to lie in an almost east and west direction. These conditions required the computations to be gone through three times before obtaining a correct reverse azimuth and the distance apart of the stations.

In the figure, let A represent the position of Kaulia hill station; B that of Mahadeo Pokra hill station; C and D those of the Snow Peaks. (XXVI and XXIV were the ones selected as they formed the most symmetrical figure with the stations of observation and their summits were well KAULIA, defined and suitable for observing to)

^{*} The differences in the heights of the peaks observed from Kaulia hill station are due to a different value being used for one division of the level scale in the correction made for dislevelment. In the original computations the value used for I division of the scale was $5^{"}$, *i.e.*, the value engraved on the tube by the makers but in the revised computations $6^{"}$ was employed, this being the value obtained from observations made with a bubble tester.

Then we have—

Known latitude and longitude of C.	Previously determined from sta-
",",",",",",",",",",",",",",",",",",",	tions in the plains of India.
", latitude of A and B. ", azimuth of A from B. ", angles CAD; ABC; CBD.	From observations made at A and B.

And from the observed quantities we can compute the azimuth of B from A, the distance AB, and obtain the angle DAB.

Then in the triangles ACB, ADB, knowing the side AB and the angles, CBA, BAC, and DAB, ABD respectively, the lengths of the remaining sides can be computed and from the triangles ACD, BCD, knowing the two sides and the included angles at A and B respectively, the third side CD and the other angles can be obtained. But this side CD has already a value, obtained from previous observations, and consequently the difference between this known value and its computed one (the mean obtained from the two triangles) affords a correction to be applied to the base AB to get a more approximate result.

With this new value for AB, and the observed azimuth of A from B, the reverse azimuth is again computed, and a new value obtained for the angle DAB and with the re-computation of the triangles affording a second correction to AB. (This correction will be very small and will not affect the azimuth of A from B appreciably).

Then with the computed values for the angles DCB, BCA, CDA, and ADB, the azimuths of A and B from C and D are obtained, and with these azimuths and the computed lengths of the distances CA, CB, DA, DB, the latitude and longitude of Kaulia hill station (A), and Mahádeo Pokra hill station (B) are computed. These are approximately correct geodetic values, and with these values for the latitudes and the observed azimuth, the reverse azimuth and distance between them were again determined. With these data the triangles were finally computed, spherical excess being applied to the angles; and with the new lengths and azimuths a final value for the geodetic co-ordinates obtained. These values are given below and for comparison the values obtained by the method described in the "Report of the Identification and Nomenclature of the Himalayan Peaks, etc." are also recorded :---

STATION.		Latitudė N.	Longitude E.	Azimuth.	Log Distance. Feet.	Height. Feet.
Kaulia hill station .	new old	° , ° 27 48 58 [.] 9 27 48 58 [.] 6	°, " 85 16 47 [.] 9 85 16 47 [.] 9	o / # 296 10 34 296 10 25	5 [.] 0091648 5 [.] 0090052	7,110 7,050
Mahádeo Pokra hill station.	n ew old	27 41 31.8 27 41 31.6	85 33 47 ^{.6} 85 33 47 ^{.3}	116 18 29 116 18 20		7,158 7,090

The heights of Kaulia hill station and Mahádeo Pokra hill station were also re-computed. In the note on page 5 of the "Report on the Identification, etc." it will be seen that the vertical angles to the snow peaks could not be taken at the time of minimum refraction owing to cloudy weather, and that a co-efficient of refraction of 0.075 had been employed in the computations. These computations were made in Nepal, where no books of reference were available. As the subject was a controversial one, and it did not seem desirable therefore to introduce any factor that might be made a matter for discussion, a co-efficient very little larger than the normal one was employed; although at that time the heights were computed with varying co-efficients, and it was noticed that as the co-efficients increased up to about o'I the resulting values became more accordant. On the return from the field an investigation into the value to be used for the co-efficient was made in the following way:—

Let H=height of any known peak.

Y = ,, of the station from which observations to H are taken.

E = the angle of elevation from Y to H.

c=distance in feet between Y and H.

K = co-efficient of refraction.

Then $H-Y=c \tan \left\{E+c\left(\frac{1-2K}{2}\right)\frac{\rho+\nu}{2\rho\nu} \operatorname{cosec} 1''\right\}$. or approx. $K-\frac{2\rho\nu}{c^{2}(\rho+\nu)}\cos 1'' Y=\frac{E\cdot 2\rho\nu}{c(\rho+\nu)}\sin 1''+\frac{1}{2}-\frac{H\cdot 2\rho\nu}{c^{2}(\rho+\nu)}\cos 1''.$

Seven snow peaks to which observations had been made on different days were selected, and substituting in the above equation the values of the known quantities, seven equations of the form K-fY=F were formed.

These equations were solved by the method of minimum squares for K and Y with the resulting values—

for Kaulia h. s., K (co-efficient of refraction)=0.0975 Y (height)=7,143 feet.

The formula used is only an approximate one, but sufficiently accurate to obtain the values of K as it is small; Y being large, however the value given above was not accepted as correct; the final value adopted being the mean of the results obtained from the seven peaks computed independently, the co-efficient of refraction as obtained above being employed. These values are given in the table with the revised co-ordinates.

With the new values for the co-ordinates of Kaulia hill station and Mahádeo Pokra hill station, the positions of Kukani Bungalow, Khatmandu Clock Tower, Khatmandu Pillar and Budhnáth Pagoda were obtained; Khatmandu Pillar was fixed by Major Wilson in 1883, the two values are given for comparison.

Observer.	Year.	Station,	Latitude N.	Longitude E.
Major Wilson	1883	Khatmandu Pil- lar.	°°′,″ 27 42 0	° , " 85 21 16
Captain Wood	1903	j)	27 40 49 . 0	85 21 48·2

In addition the co-ordinates of twenty-one of the snow peaks, previously unfixed, which had been seen from both stations of observation were computed and in order to obtain some idea of the accuracy of their fixings, the co-ordinates of any previously fixed peak in the vicinity of the new peaks were also computed. A synopsis of the new and old values is given below but it should be borne in mind that the observations are being used for a purpose which is very different to that for which they were originally made; and that the angles subtended at the peaks by the base Kaulia hill station—Mahádeo Pokra hill

IDENTIFICATION OF SNOW PEAKS IN NEPAL.

	6					LATITU	DE N	I.				Longit	UDE	e.		Heig	нт.
	STATION.		_		QI	d.		New	.		Old	•		Nev		Old.	New.
Peak	XV (Ever	est)		27°	5 9′	16".22	27 ⁰	59'	184.1	86°	58′	7 *.09	86°	58'	11.1	29, 002	2 8,706
"	xviii	•	•	27	; 2	50.52	27	52	51.9	86	31	58.62	86	32	2.0	21,980	21,866
'n	XX (Gau	risank	ar)	27	57	51.97	27	57	53.8	86	22	43 ^{.27}	86	22	49 '7	23,440	23,372
29	XXI	•	•	27	57	28·83	27	57	29 [.] 6	86	9	8.82	86	9	9.1	19,550	19,475
"	B. 484	•	•	2 8	6	14.0	28	б	17.4	85	56	35'7	85	56	38.1	19,740	19,941
"	S. 31		•	28	10	10'0	28	10	9 '4	85	43	17.7	85	43	17.7		20,993

station in only one case (S31) exceeds 30° the average being under 18°, while at Everest the angle is under 7° the lengths of the sides being 90 and 106 miles.

Digitized by Google

Revised Appendix No. 1 of the Report on the Identification and Nomenclature of the Himalayan Peaks.

DATE.		L	ATIT	UD E.					Azım	итн о	r Rei	BRRING	MARK.	
UX18.	-	Star.			Latitu	de N.		Pola	ris.	5	irsce i	Minoris.	M	can of day.
1903. Oct. 24th . { " 26th . { " 27th . {	Polaris	•	•	27°	48'	28″ .6	93°	26'	48 ″'0	93°	26'	36".4	2	9 64
Oct. 24th . {	a Gruis	•	•			21.0			52.0			37'3	5 93	° 26′ 4 <u>33</u> 45:76
	Polaris	•	•			25.3			45.0			44.3	1	45.76
" · {	γ Gruis	•	•			24.9			52.0			41.3	5	43/0
" 27th .	Polaris	•	•			26.8			37.1			49°3 46°5	3	41;73
(a Piscis	Austra	lis,			28.1			34.1			46.2	5	+-,/3
	N	ABAN		27	48	25.9	93	26	44.78	93	26	42.47	93	26 43.63

Results of Observations for Latitude and Asimuth at Kaulia hill station.

Azimuth of R. M. from hill station (from S. by. W.)= 273° 26' 43''.6.

	_			DISTA	NCE,			
	Овјест.			Log feet.	M iles.	Azı	MUT	н.
Гo Kaulia hil	l station from	Peak XXII		5.3678987	44'184	• 61	, 4	* 22
,,	,,	XXIV		5.3381499	41.259	53	31	38
33	57	xxv		5.2638643	34.772	29	30	28
**	"	XXVII		5.2984811	37.657	345	16	47
27	**	XXVIII		5.4708605	56.002	319	18	0
3 2	19	XXX	•	5.2372321	65.253	320	34	41

Mean computed Distances and Asimuths.

	Сомр	UTED	FROM				L	atitud	le N.	Longit	ude E.	Height in feet.
Peak	XXII	•	•	•	•	•	27°	48'	58*.31	85° 16′	48 *• 78	7,0 8 8
33	XXIV	•	•	•	•	•			58 .8 8		47'34	7,068
"	xxv	٠	• ·	•	•	•	- - -		58.31		4 ^{8•} 75	7,084
,,	XXVII	•	•	•	•	•			5 ^{8.} 79		47.16	7,032
,,	XXVIII	•	•	•	•	•			5 8·40		48.50	7,025
"	xxx	.•	•	•	•	•			58.82		46.89	7,005
			Mı	BAN	•	•	27	48	58°0	85 16	47'9	7,050

Observed Latitude=27° 48' 25".9. $= 27 \ 48 \ 58.6.$ $\therefore \ O-C=-32.7.°$ Computed

IDENTIFICATION OF SNOW PEAKS IN NEPAL.

	NAME OF PE	A 17	,		atit	de N.		- ait-	ide E.			Azim	UTH.			Height	IN FEET.
	NAME OF TE	лк.				ae IV.		ngitt	ide E.	Con	npute	d.	Obs	erved	l .	Computed.	Observed
Peak	x XV			•	,	, 16.33	。 86	, 58	•	0 263	!	"	0 263	,	•	20,002	28,773
		•	•	27	59 50			-	7.09	_	4	51		4	14		21,881
"		•	٠	27	52	50.22	86	31	58 ·62	266	23	49	266	23	6	21,980	
"	XX	•	•	27	57	51.97	86	22	43.27	261	6	4 4	261	6	18	23,440	23,385
"	XXI	•	٠	27	57	28.83	86	9	8•85	259	2 6	8	259	25	51	19,550	19,500
"	XXIII	•	٠	28	21	6.74	85	49	21.20	221	49	7	221	49	11	26,290	26,281
"	XXXIII	•	•	28	29	23.77	84	13	57:42	126	13	2	126	10	13	22,920	22,844
"	XXXIV	•	•	28	32	4'99	84	9	52.78	126	10	48	126	16	51	26, 040	25,997
"	XXXV	•	•	28	32	11.32	84	7	3 2 .33	125	25	22	125	2 6	51	24,690	24,664
"	XXXVII	•	•	28	29	40 [.] 71	83	59	22.15	120	58	40	121	I	2	22,940	22,89 9
"	XXXVIII	•	•	28	29	5 3 °64	83	59	20.20	121	6	10	121	6	17	22,960	22 ,922
"	XXXIX	•	•	28	35	44.31	83	51	46.52	122	10	12	122	10	50	26,492	26,477
"	XL	•		28	31	5.31	83	50	55 [.] 72	119	17	52	119	18	16	23,607	23,592
"	XLVII	•	•	28	40	26.10	83	19	7.03	116	44	41	116	44	32	23,539	23,424
"	S. 12	•	•	28	15	51.0	85	14	10,3	175	3	15	175	5	8	19,130	19,105
,,	B. 7	•		28	22	45'3	85	6	0.0	164	14	12	164	13	32	23,310	23,369
"	B. 48 4	•		28	6	14.6	85	5 6	35.7	243	48	5	243	46	25	19,740	19,907
"	S. 31	•		28	10	10'0	85	43	17.7	227	52	40	227	54	5		20,956
" T	. 8 or S. 30	•		28	14	59.1	85	47	32.0	226	14	11	226	14	24		22,569
"	M.a	•		28	23	27 .3	84	49	55'2	145	27	7	145	27	21		18,730
"	S. 7	•	•	28	-0 19	55.1	85	12	35 - 7'2	172	-7 22	49	172	-7 22	 I		
	S. 8	•		23			1 ⁻									•••	22,259
))	3.8	•	•	20	19	53 *8	85	12	22.0	172	46	22	172	45	48	•••	22,363

1

Results of Identification of Snow Peaks.

Revised Appendix No. 2 of the Report on the Identification and Nomenclature of the Himalayan Peaks.

	N	AME C	of Pea	. K.	_ 4			Horiso	ngle,	Vert	ical	Aðgle	e.	
;	R. M.							• 0	, 0	•		•	3	٠
Peak	XXIV;	•	•	•	•	•		63	59	33.1	E.	4	25	9
y >	XXV.	•	•	•	•	•		8 9	42	3 ^{8.} 9	E.	4	23	28
"	XXVI.	•	•	•	•	•		115	50	8-3	E.	3	8	2
"	xxvII.	•	•	•	•	•	•	120	10	12.8	E.	3	I	33
"	xxvIII.	•	•	•	•	•		135	39	29.6	E.	2	16	35
,,	xxx .	•	•	•	•	•		13 3	59	19.1	E.	2	2	6

Mean values of angles measured at Mahádeo Pokra hill station between the Snow Peaks.

Results of Observations for Latitude and Asimuth.

			L	ATITI	UDE.					AZIMU	TH OF	Ref	RRRING	Mark.		
Ľ	DATE.	Star.			La	titud	e N.	1	Polari	s.	ζUr	sæ M	linoris.	M	tan of	day.
Nov	7th	Polaris β Gruis	•		0 27	, 40	53 ^{.2} 5 ^{2.5}	。 89	, 25	, 64.1 55.2	• 89	, 25	46·8 60·1	。 } 89	, 25	50.53
3 3	8th }	Polaris α Gruis	•	•			54'5 52.3			56°6 60°3			58·9 52·3	}		56.99
1	M BAN				27	40	53.1	89	25	5 9.01	89	25	54 °50	89	25	56.76

Azimuth of R. M. from hill station (from S. by W.) = $269^{\circ}25'56''\cdot 8$.

Mean computed Distances and Asimuths.

					DISTAN				
		Овј	ест.		Log feët.	Miles.	Azimuth.		
Fo Ma	hádeo Po	kra h.	s. frcm	Peak XXIV	5'2875372	36'720	o , . 25 33 3		
,,	**	"	"	xxv.	5.3117720	38.827	359 43 o		
"	"	"	"		5.4535693	53.819	333 24 30		
,,	,,	>>	"	XXVII.	5'4419195	5 2 °394	329 3 22		
"	*7	"	**	xxviii.	5.5926676	74.137	313 22 3		
, ,	**	2)	**	xxx.	5*6428891	83.225	314 59 30		

IDENTIFICATION OF SNOW PEAKS IN NEPAL.

	COMPUTED FROM.						Latitude N.				Loi	ngitu	de E.	Height in feet	
Peak	XXIV	-							0 27	, 41	32.08	85	, 33	48.17	7,114
	XXV	•			•	•	•		-,		31.24	•3	33	47.20	7,133
39	XXVI	•	•		•	•	•				31.71			47.65	7,069
"	XXVII	•	۰.		•	•	•				31.29			46'92	7,092
"	xxviII	•	•		•	•	•				31.08			46.20	7,º74
"	XXX	•	•		•	,	•	•			31-65			47 .24	7,060
						M	BAN		27	41	31.0	85	33	47.3	7,090

Resulting Co-ordinates for Mahadeo Pokra hill station.

,

Observed Latitude = 27 40 53'I Computed ,, = 27 4I 31'6 \therefore O-C = -38''5

. .

v

NAME OF PBAK.					Azian	HEIGHT IN FEET.		
			Latitude N.	Longitude E.	Computed.	Observed.	Comput- ed.	O,bserved
			• / //		0 I Ø	0 / 4		
Peak	XV	•	27 59 16.22	86 58 7.09	256 21 16	256 20 39	29,002	28,950
"	XVII	•	27 45 15 54	86 36 58 10	265 57 27	265 56 43	22,820	22,777
"	XVIII	•	27 52 50.52	86 31 58 62	257 26 24	257 2 5 44	21,980	21,945
"	XIX	•	27 58 13-82	86 28 33:08	250 46 44	250 45 41	23,560	23,544
"	XX	•	27 57 51 97	86 22 43 27	249 13 19	249 13 53	23,440	23,402
"	XXI	•	27 57 28 83	86 9 8.85	242 57 16	242 56 44	19,550	19,480
"	XXIII	•	28 21 6.74	85 49 21.76	199 II 7	199 11 2	26,290	26,254
**	XXXIII	•	28 29 23.77	84 13 57 42	124 22 46	124 21 55	22, 920	23,018
"	XXXIV		28 32 4.99	84 9 52.78	124 31 44	124 31 46	26, 040	l
,,	XXXV		28 32 11.32	84 7 32.33	123 51 50	123 52 56	24,690	24,828
,,	XXXVII		28 29 40.71	83 59 22.12	120 16 24	120 17 55	22,9 40	23,052
"	XXXVIII	•	28 29 53 64	83 59 20.56	120 22 40	120 22 26	2 2,9 бо	23,079
33	XXXIX		28 35 44.31	83 51 46.52	121 20 46	121 21 2	26 ,492	26 ,5 58
,,	XL		28 3 1 5.21	83 50 55 72	118 55 25	118 55 33	23,607	23,771
*	XLVII		28 40 26 [.] 10	83 19 7.02	116 48 19	116 47 54	23,539	23,761
,,	B. 439		27 57 11.2	86 25 18.2	250 55 20	250 54 44		21,823
,,	B. 522		2 8 16 20°3	85 35 48 9	182 57 2	182 57 12	22,010	22,142
,,	B. 495		28 10 36.4	85 51 41.7	208 36 10	208 35 0	21,760	21,748
,,	B. 484		28 6 14.6	85 56 35.7	219 15 14	219 14 55	19,740	19,894
د ور	S. 31	.	28 IO 10'0	85 43 17.7	196 23 18	196 23 11		20,977
	hill station		27 48 58 [.] 6	85 16 47.9	116 18 20	116 18 29	 7,050	7,028

Results of Identification of Snow Peaks.

179

,

.

.VII .

180

TOPOGRAPHICAL SURVEYS IN SIND.

Extracted from the Narrative Report of Mr. C. F. Erskine, in charge of No. 12 Party (Sind) for Season 1903-04.

GENERAL PLAN OF SURVEY OPERATIONS.

During the year under report, detail survey operations were carried on in the Hyderabad, Thar and Párkar and Karáchi districts.

Triangulation in advance was carried out in the Thar and Párkar and Karáchi districts, and also in Berar.

Detail survey was carried out entirely by interpolation.

The total number of fixings from which the work was checked by the camp officers is 1,212. The total area topographically surveyed on the 2-inch scale is 2715.31 square miles.

COMPOSITION OF DETACHMENTS EMPLOYED.

At the commencement of the field season the composition of the detachments employed on the various survey operations was as follows :----

Detail Survey—2-inch scale.

Mr. Warwick's camp consisting of six men averaged per man per mensem 35 square miles and 554 fixings.

Munshi Rahmatullah's camp consisting of 10 men averaged outturn per man per mensem 32 square miles and 444 fixings.

Late in the season, one man from Mr. Warwick's camp and two men from the traverse camp were added to Munshi Rahmatullah's camp to finish all the remaining area in the northern part of the 2-inch detail survey.

In the traverse camp under Mr. Vander Beek the average outturn of chaining per man per mensem was 54 linear miles.

Mr. Bond and Babu Dhani Rám were employed in running net-works of triangulation, the former in the desert of Thar and Párkar district and the latter in the Karáchi district in continuation of the previous season's work.

TRIANGULATION AND TRAVERSING.

Two net-works of triangulation were run to afford reliable points to the detail surveyors working in the desert portion of Thar and Párkar district and in a portion of the Karáchi district.

- (a) A net-work covering 3,252 square miles, was carried over the desert portion of Thar and Párkar district, situated on the east of the Nára river, by Mr. Bond in well planned triangles with an average of 10-mile sides. The stations of this net-work were marked by platforms of bricks and clay, two bricks marked with a dot and circle were embedded, one flush with the upper surface of the platform and the other buried about two feet below the surface.
- (b) A second net-work covering 970 square miles, was completed by Babu Dhani Rám in the Karáchi district, east of the Indus river.

The stations of this series were marked in the same manner as those of net-work (a).

For observing, Mr. Bond used a 6-inch theodolite and Babu Dhani Rám a 7-inch. Lieutenant E. T. Rich, R.E., was employed in running a net-work of triangulation in Berar for the greater part of the field season. His outturn of work was 1,772 square miles, and the instrument used was a 6-inch theodolite.

Traversing by theodolite was carried over the lands watered by the Jamrao, Nasrat and Dád canals and consisted of main circuits, sub-circuits and connections with triangulated points.

During the past season 6 main circuits and 25 sub-circuits were measured and in addition to this 29 connecting lines were run over the Sanghar taluka where the village boundaries were not demarcated.

The total area traversed is 2,033 square miles which together with the area triangulated and traversed in former seasons and not yet topographically surveyed makes an area of about 5,300 square miles available for detail survey during the coming field season. The total number of stations observed at was 6,159 and the angular work was checked by observations for azimuth taken at 99 stations of main and sub-circuits.

The total linear measurements amounted to 2,456 miles and were checked by 17 connections with the stations of the minor triangulation executed by this party and with some stations of the Sehwán Secondary Series.

The average correction per 1,000 links being 0'39 link and the angular error per station being 0'-53".

No permanent marks were erected at traverse stations, but wherever possible the stones embedded by the Revenue authorities to demarcate village boundaries were utilized.

The country topographically surveyed on the 2-inch scale during the year under report was generally of the same monotonous description as that met with in former seasons; near the river Indus the country is well populated and highly cultivated, moving eastward the population becomes noticeably scantier and large tracts of uncultivated ground interspersed with sand hills are met with; the eastern portion is desert, the sand hills, rising to a height of about 150 feet above the surrounding ground level, are perfectly bare and destitute of water.

DURATION AND CLOSE OF FIELD SEASON.

The recess office of the party was closed at Karáchi on 26th October 1903 and re-opened at Nawábsháh on 1st November. The head-quarter and traverse camps were located at Nawábsháh during the entire season. Survey operations were brought to a close by the end of March and the office was then transferred to Karáchi for recess.

GENERAL REMARKS ON WORK COMPLETED AS TO COST RATES, ETC.

9. The total cost of the party during the year ending 30th September 1904, is R82,712-7-5 and the cost rates per square mile are as follows:—

	•		•		A	a. p.		
Triangulatic		٠	•	•	3	2 6	per s	quare mile.
);	• •	•	•	•	4 1	15 10	,,	"
•	"Sind .	•	•	•	9 I	59	ń	,,
	y on 2-inch scal	le .	•	•	10	3 3	"	\$3
Fair mappin	g on ½ inch "	•	•	٠	0 1	14 0	"	31
<i>11 11</i>	2 1, 1,	•	•	٠	31	o 7	"	"

VIII

NOTES ON TOWN AND MUNICIPAL SURVEYS.

By Captain Coldstream, R.E., and Mr. R. B. Smart.

The scale and method to be adopted for the survey of a town or munici-1.—Consideration of scale and description pality must depend on the special purof survey. pose for which the survey is required.

A town survey may be wanted for one or several of the following reasons :---

- (i) For general administration purposes.
- (ii) To enable a water supply or drainage scheme to be designed and carried out.
- (iii) For the purpose of checking encroachments on the public roads and streets.
- (iv) To provide site plans for new buildings and works.
- (v) To provide an index and basis for a record-of-rights.

In deciding the scale and description of survey, care should be taken that the Chairman or Magistrate of a municipality understands the limits and advantages of the scale proposed. If the map is required merely for general purposes, a comparatively small scale of from 6 inches to 16 inches to the mile will probably meet all requirements. For a drainage or water supply scheme the scale should be large enough to show each street and alley clearly, and should not be less than 16 inches to the mile, but if the map is also required to check encreachments and decide disputes, some larger scale, from 32 inches to 64 inches to the mile, or 100 feet to the inch, should be adopted, while if one of the objects is the preparation of a record-of-rights of holdings, the survey of every detail will be necessary, and nothing smaller than a scale of 64 inches to the mile, or 50 feet to the inch, will suffice for the sheets which include streets and blocks of buildings. In the last case it may, however, save expenditure and meet all requirements if the open spaces and cultivation, where these areas form a large proportion of the whole, are surveyed on some smaller scale, 16 inches to the mile or 200 feet to the inch.

The chairman of the municipality should be asked to appoint some respons-II.--Arrangments to be made with Chairman. *ible local official to point out to the sur veyors all boundaries, e.g., those of mahal las, wards, or villages, which are to be shewn on the maps, or to arrange that all* such boundaries may be clearly demarcated on the ground before survey.

A list of all names to be entered on the maps should be provided by the chairman, or prepared by the survey establishment, and sent to the chairman for additions or alterations.

An estimate of the duration and cost of the work under different headings should be prepared for submission to the administrative officer, and a copy should be sent to the chairman of the municipality. If a record-of-rights is to be written on the basis of the survey, the share to be taken by the survey establishment in the record-writing, should be arranged before operations commence, and should be very clearly defined. In this case, whether the records are to be written

by the survey establishment or not, co-operation between the survey and municipal officials will be particularly necessary, and the chairman should be informed that want of energy on the part of the municipality will delay the completion of the work and enhance the cost.

The number of copies of the maps, which will be required, and the method of reproduction to be adopted, should be ascertained before survey. The wishes of the chairman should also be ascertained on such points as the entry of temporary buildings, *e.g.*, galvanised iron sheds, plague huts, etc., and the necessity or otherwise for distinguishing between masonry and half masonry, as well as between masonry and mud buildings.

For the survey of a large municipality it will be useful to fix a few promi-III.—Triangulation and traverse work. nent points, both within the town and on its outskirts, by triangulation, on which to base the traverse work; but for both large and small towns it will be sufficient if the exterior traverse circuit is connected directly with neighbouring G. T. stations, or if no G. T. stations are available at a short distance, with the traverse stations of adjacent cadastral work.

The preliminary net-work of theodolite traverse should be closer and more detailed for town surveys than for surveys on the same scales of open ground, and for the larger scale surveys, every street and alley should be traversed.

The exterior circuit (which will generally follow the municipal boundary) and if the area is extensive, the sub-circuits also, should be executed with the same precision and care as the main circuits of traverses for cadastral surveys. Observations for azimuths should be taken both on main and sub-circuits.

Where the scale of survey is expressed in feet to the inch and areas are required in square feet, the setting up and proving should be done in feet, and all measurements should be made and recorded in feet and decimals of a foot, both in the operations of traverse and detailed survey. If, however, the scale adopted is a multiple of the ordinary cadastral scale, 16 inches to the mile, and areas are required in acres, it will be more convenient to use Gunter's chains and links throughout.

The theodolite stations on the exterior circuit should be marked permanently by stones, theodolite stations on the interior traverses may be marked by embedded bricks, or by iron pegs, or where possible, by marks chiselled on the pavement or on curb stones, etc. It will greatly facilitate the finding of all stations, if a distinctive sign and the distance in feet or links to the station are marked in tar on the nearest wall. If municipal boundary pillars exist, they should be utilised as theodolite stations, and if possible, the lines of the traverse should run direct from pillar to pillar.

The detailed survey of towns on small scales (6 inches to the mile and IV.—Detailed survey. sional topographers, but for the larger scales, cadastral *amins* make the best and most economical surveyors. Cadastral *amins* should not be employed on small scale work, as they invariably fail in the delineation of detail that requires generalisation and judgment, and cannot as a rule even read a small scale map correctly. Their work in towns should

be confined, as far as possible, to the merely mechanical measuring and plotting of offsets from traverse lines and the description, by conventional signs or reference lists and numbers, of the detail thus surveyed.

1

ł

If the survey is on a small scale, the plane-table sections should be thoroughly tested and passed by a superior officer. Where the scale is large and *amins* are employed, one Inspector should be appointed to the charge and supervision of every 6 *amins*. The Inspector's chief duty is to run check lines while the work is in progress, so that bad work may be discovered and rejected at the outset, and the perpetrator dismissed, and a substitute appointed by the officer in charge.

In addition to this, a superior officer should personally check as much as possible of the work 'in situ,' but in large scale surveys it will frequently be impossible for an officer to check every sheet in this way, and the system of independent *partáls* should be resorted to. These should consist of the re-survey along lines and of small areas in each sheet, and should be carried out after the sheet has left the surveyor, and is in the custody of the officer in charge. The selection of lines and areas for re-survey in this way should be made by a superior officer, and on the results of the re-survey, the sheets are returned for correction or passed by the officer in charge. If bad work necessitating resurvey is discovered, the Inspector as well as the *amin* concerned should be held responsible, but such cases should be very rare if the Inspector has done his duty conscientiously.

When the original sheets of a large scale survey have been passed and inked V.-Completion of original sheets, traces in, it will generally be found well worth the and area statements. in, it will generally be found well worth the extra labour and expenditure involved, to examine them on the ground. Mistakes are liable to occur in inking in, and a detail that has been correctly surveyed may be shewn incorrectly; for instance owing to mistakes in the reference lists, or on the part of the draftsman, fences may be inked in as walls, and *vice versd*. As much as possible of this work should be done by a superior officer. Very little actual measurement will be required as the survey should be correct, and it can generally be seen at a glance whether the map represents the detail on the ground faithfully or not.

In order to facilitate reference to the sheets of large scale surveys, an index chart on some smaller scale should

VI.—Preparation of index charts.

index chart on some smaller scale should be prepared. The sheets or tracings should

be numbered consecutively, and arranged in portfolios, either by *mahallas* or other administrative or fiscal divisions or, if the limits of these are not known, as is sometimes the case, by arbitrary blocks.

IX

NOTES ON RIVERAIN SURVEYS IN THE PUNJAB.

Extracted from the Narrative Report of Captain E: A. Tandy, R.E., in charge of No. 18 Party (Punjab) for season 1903-04.

Riverain Surveys.—The original decisions on the subject were naturally tentative, and based on theoretical conceptions of the conditions. The 8-inch scale originally suggested was abandoned almost at once, as quite impracticable, and the practice of placing markstones on traverse points was given up at an early date from motives of economy; at the same time there are probably circumstances in which both these items might be feasible and worth while.

Last year, when the stage of fair mapping was first reached, definite orders were given as to the style of drawing, etc., but nothing of the sort was obtainable for the treatment of discrepancies disclosed by compilation; both the Settlement Commissioners who inspected the work leaving the officer-in-charge to make the best of it, with a very fair impression, which was clearly shared by the Deputy Surveyor-General, that its utility was dubious.

The officer-in-charge has, however, felt, in the face of considerable scepticism, that there must be some way in which the scientific aid of the department might be utilised to help the Punjab out of its riverain difficulties, and that it was his business to discover it. The more muddle and chaos he has found, the more deeply has he been convinced of the urgent need for scientific assistance, if only it could be so directed as to meet the needs of those for whom it is required. Until he had had some personal experience in the field it was impossible for him to form any satisfactory opinion; but his whole policy during the field season was aimed at gathering as wide a variety of experience as possible, with a view to getting the work placed on a satisfactory basis during the recess.

As the Settlement Commissioner could not himself spare the necessary time, he deputed an officer with settlement experience about the end of July, to go thoroughly into the matter on his behalf.

Both these officers, very soon came to the conclusion, repeatedly prophesidd by the Deputy-Surveyor-General, that, for the legal settlement of disputes, no use could be made of fair maps in which discrepancies had been adjusted without authority.

This difficulty, together with a proposed solution of the whole question, has been fully discussed in a report which received the complete approval of the Settlement Commissioner and now only awaits the orders of the Surveyor-General and of the Financial Commissioner of the Punjab.

Previous to 1899 the boundaries of riverain estates were adjusted to the movements of the Punjab rivers according to local usage, which varies sometimes from village to village, but could generally be classed under 3 heads :--

- (i) fixed boundaries irrespective of the position of the rivers.
- (ii) boundaries fluctuating with the centre of deep stream.

2 B

(iii) modified deep stream boundaries, where large tracts unmistakeable belonging to an estate were retained by it in spite of being cut off by changes in the river.

District boundaries generally coincided with those of the villages, though sometimes they were apparently dependent on the deep-stream rule, irrespective of petty local adjustments between opposite estates.

The immense amount of litigation which occurred annually, with little or no definite evidence to elucidate it, was further complicated by the fact that in the case of villages lying on the boundaries of districts or states, the village boundary was generally also the boundary of jurisdiction, so that when the possession of a certain area was disputed by opposite estates, it was never certain, until the dispute was settled, which of the two administrations was the proper court of jurisdiction.

Considering the immense areas of water and sand and the way their positions are continually shifting, it will be seen that there must, under any system, be a great deal of luck in the amount of arable land in any particular estate at a given time; so that pedantic accuracy is absurd, and what is required is rapid and substantial justice, to enable men to proceed with their ploughing before the season is passed.

Punjab Act No. 1 of 1899 was accordingly passed to effect a uniform system of fixed boundaries, both for property and jurisdiction in all British districts. The Act cannot be forced on Native States. They have for the most part acquiesced in its provisions, but occasionally the fixed boundary has only been accepted by them for purposes of jurisdiction, and the owners of estates have refused to relinquish their old usages as to the boundaries of property.

As stated above the fixed boundary system was already in force in many localities, sometimes continuously throughout whole tahsils and districts, though often, even in these cases, groups of 2 or 3 villages had never accepted it; while there were other tracts where the fixed boundary system was nowhere recognized as determining the rights to property.

It is to these latter tracts that Settlement Officers have been sent, since the passing of the Act, and in determining fixed boundaries they have to arrange all sorts of exceptions whereby arable ground shall continue in possession of its present recognized owners in spite of the newly settled boundary, until such time as it shall be finally washed away. There are also many other difficulties arising from the whole principle of fixed boundaries being opposed to local usage.

Riverain Settlement Officers have therefore a great deal to consider and attend to besides the bare necessities of survey work, though they have to make some sort of maps, on which to record their decisions, and enable future measurements to be made.

The most approved system is for the river to be divided into sections of a few miles each, and to lay out over each section, a single system of squares including the villages on both sides of the river; but a good many varieties of procedure have been adopted in different places. Lately they seem to have tried as far as possible to lay down boundaries consisting entirely of straight lines; pointer pillars are generally erected on the high banks to assist in relaying the points of intersection of the boundary lines, though they are often so close together that they could only afford a very rough approximation.

The Settlement Officer's survey, therefore, only includes the state or district boundary and its immediate vicinity, so that sometimes large villages on the boundary are not surveyed in their entirety; the inland boundaries have generally been surveyed and mapped at some previous district settlement, and the riverain settlement would become extremely laborious and would probably raise many extraneous difficulties if it attempted to embrace and reconcile itself with the old surveys. These difficulties will be more apparent if we remember that sometimes one district will have been surveyed by the old patwari system of triangulation, and the other by the square system, and also that the Karm or unit of measurement may have been quite different in two contiguous districts; several different Karms, varying from about $4\frac{1}{2}$ feet to $5\frac{1}{2}$ feet in length, are in use in the Punjab. The riverain officer, moreover, will often skip a lot of riverain villages, where the fixed boundary system has always obtained and is shown in the old district settlement surveys and he considers further intervention unnecessary or undesirable.

As this variegated patchwork is all the Settlement Department has been able to do for itself, it has very naturally called on the Survey of India to make a clear and complete compilation of the riverain settlements, which shall have such a definite geographical value and be so based on permanent points on the high banks that whatever changes may occur in the river, it may be possible through all time to relay disputed boundaries with reasonable accuracy. Considering how very much "in the air" the riverain settlement maps usually are, and the generally nebulous state of their connection with the district surveys, this is evidently a matter where properly directed scientific work, even if somewhat imperfect in its details, may be of inestimable value, in narrowing down all future uncertainties to definite limits, and enabling disputed boundaries to be relaid with substantial accuracy and the minimum of delay.

It has naturally taken some time and considerable actual experience of the conditions to get into satisfactory touch with this work; the difficulty has been enhanced by the large number of changes in personnel both on the survey and the settlement side. It is hoped that the proposals now under consideration will eventually lead to a feasible and satisfactory procedure being adopted.

So far the work has been chiefly confined to special new settlements under the Riverain Boundaries Act. But the Settlement Commissioner appears so sanguine of the usefulness of the latest proposals, that he seems inclined to get the old settlements, which have always shown fixed boundaries, also included in the riverain programme of the party, so that the whole of the riverain tracts in the Punjab should be eventually completed.

G. I. C. P. O.-No. 47 S. G.-27-8-06-350 - J. W

·

U L

1

•

•

Digitized by Google

•

.

•

.

.

•

-

•

-.

Digitized by Google

-

•

•

•

•

•

Digitized by Google

EXTRACTS

FROM

NARRATIVE REPORTS

OF OFFICERS OF THE

Surbey of India

FOR THE SEASON

1903-04.

PREPARED UNDER THE DIRECTION OF

COLONEL F. B. LONGE, R.E., SURVEYOR GENERAL OF INDIA.

CONTENTS.

I-THE MAGNETIC SURVEY OF INDIA. II-PENDULUM OPERATIONS. III-TIDAL AND LEVELLING OPERATIONS. IV-ASTRONOMICAL AZIMUTHS. V-UTILISATION OF OLD TRAVERSE DATA FOR MODERN SURVEYS IN THE UNITED PROVINCES OF AGRA AND OUDH. VI-IDENTIFICATION OF SNOW PEAKS IN NEPAL. VII-TOPOGRAPHICAL SURVEYS IN SIND. VIII-NOTES ON TOWN AND MUNICIPAL SURVEYS. IX-NOTES ON RIVERAIN SURVEYS IN THE PUNJAB.

CALCUTTA: OFFICE OF THE SUPERINTENDENT, GOVERNMENT PRINTING, INDIA. 1905.

Constant and the second second